

Building SOA-Based
Composite Applications Using
NetBeans IDE 6

Design, build, test, and debug service-oriented
applications with ease using XML, BPEL, and
Java web services

David Salter
Frank Jennings

 BIRMINGHAM - MUMBAI

Building SOA-Based Composite Applications Using
NetBeans IDE 6

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2008

Production Reference: 1010208

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-62-2

www.packtpub.com

Cover Image by Nilesh R. Mohite (nilpreet2000@yahoo.co.in)

Credits

Authors

David Salter

Frank Jennings

Reviewer

Mario Pérez Madueño

Acquisition Editor

Priyanka Baruah

Development Editor

Nikhil Bangera

Technical Editor

Bhupali Khule

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Indexers

Hemangini Bari

Monica Ajmera

Proofreader

Angie Butcher

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

About the Authors

David Salter is an enterprise software architect who has been developing software
professionally since 1991. His relationship with Java goes right back to the beginning,
using Java 1.0 for writing desktop applications and applets for interactive web
sites. David has been developing Enterprise Java Applications using both the J2EE
standards and open source solutions for the last five years. David runs the Java
community web site Develop In Java (http://www.developinjava.com), a web site
for all levels of Java developers.

Foremost, I would like to thank my wife and family for putting
up with my many hours at the computer whilst writing this book.
Special thanks go to my wife for all her encouragement and support.

I'd also like to say thank you to all the people at Packt Publishing,
especially Priyanka, Abhijeet, Bhupali, and Patricia. Thanks also
go to the NetBeans Enterprise Developer community, who have
provided help and assistance throughout the writing of this book.

Frank Jennings works in the Information Products Group of Sun Microsystems
Inc. He has more than 9 years of experience in Java, SOA and System Design. He
is an Electronics Engineer from Madras University and has worked for several
open source projects. Frank has written regular columns for leading Java journals
including Java Developer's Journal and Linux Developer's Week. Frank is also the
co-author of the book SOA Approach to Integration focusing on SOA design pattern for
enterprises. Frank also is involved in the technical publication of Sun Microsystems
in the fields of Solaris and Developer AMP Stack. His blog can be read at
http://blogs.sun.com/phantom and he can be reached at theghost@sun.com.
He also holds a Post Graduate Diploma in Computer Science and an Advance
Diploma in Computer Integrated Management from University of Indianapolis.

It is just amazing how the guys at Packt Publishing put up with me
inspite of my late drafts. I would like to thank Abhijeet and Bhupali
for all their hardwork in making me work to complete this book.
I also thank the NetBeans Documentation team for providing an
extensive set of tutorials on the SOA capabilities of NetBeans.

About the Reviewer

Mario Pérez Madueño was born in 1975 in Turin and lives in Barcelona. He
graduated in ETIS from the Open University of Catalonia (UOC) in 2006 and is
currently finishing studies for the EI degree. He is a foundation member of ARUOC
robotics group in the same University. Mario is a Java SE, ME and EE enthusiast and
a fan of NetBeans IDE, he is currently contributing with the Spanish translation team
for NetBeans 6.

Acknowledgements goes for my wife María, for her unconditional
help and support in all the projects I get involved, and to Martín for
giving me the force for going ahead.

Table of Contents
Preface 1
Chapter 1: Enterprise Application Development 7

SOA and POA 8
Introduction to Various BPEL Processes 10

Partner Services 11
Activities 12
Variables 12

Composite Applications and JBI 15
AirAlliance Company 17

The Problem 17
The Enterprise Stack 19
Summary 20

Chapter 2: Getting Started 21
Getting the Software 21

NetBeans IDE 6.0 22
OpenESB 22

Setting up the Environment 23
NetBeans Projects 25
Summary 26

Chapter 3: Service Engines 27
Need for Java Business Integration (JBI) 27
Enterprise Service Bus 29
The Normalized Message Router 30
Service Engine Life Cycle 31

Service Engines in NetBeans 33
BPEL Service Engine 35
Java EE Service Engine 38

Increased Performance 39

Table of Contents

[ii]

Transaction Support 39
Security Support 39

SQL Service Engine 39
IEP Service Engine 41
XSLT Service Engine 44
Summary 49

Chapter 4: Binding Components 51
Binding Components 51
NetBeans Support for Binding Components 52
File Binding Component 54
SMTP Binding Component 57
SOAP Binding Component 64
JDBC Binding Component 66
JMS Binding Component 68
Other Binding Components 70
Summary 71

Chapter 5: BPEL Designer 73
BPEL for Business Process 74
Understanding BPEL Projects 78
BPEL Views 79

Design View 80
Source View 81
BPEL Mapper 82
Palette 83
Web Service Activities 84

Invoke 84
Receive 86
Reply 87
Partner Link 88

Other BPEL Activities 90
Navigator Window 90
A Simple Example 91
BPEL 2.0 Elements 111
BPEL Products and Vendors 112
Summary 113

Chapter 6: WSDL Editor 115
What is WSDL? 115
Why WSDL? 116
The Format of WSDL Documents 117

WSDL Types 118
WSDL Messages 118

Table of Contents

[iii]

WSDL Port Types 119
WSDL Binding 120
WSDL Service 121

NetBeans Support for Creating WSDL Documents 121
NetBeans Support for Editing WSDL Documents 125
Refactoring of WSDL Entities 129
Building a Simple Contract First Web Service 130
Summary 140

Chapter 7: XML Schema Designer 141
What are XML Schemas? 142
NetBeans Support for XML Schema Documents 145

Source View 147
Schema View 148
Design View 150

Uses of Elements 153
XML Schema Design Patterns 154
Summary 157

Chapter 8: Intelligent Event Processor 159
Need for Event Processing Tools 160
IEP Service Engine 162
Continuous Query Language (CQL) 164
The IEP Editor and Palette 165

Validating Event Processors 171
Operators Input and Output Types 172
Testing IEP Projects 173
Summary 178

Chapter 9: Handling Events 179
Fault Handling Within WSDL Documents 180
BPEL Handlers 184

Fault Handlers 184
Event Handlers 192
Compensation Handlers 196
Termination Handlers 197

Summary 197
Chapter 10: Building a Sample Application 199

About the Sample Application 200
Getting Started 202

Creating Partner Services 203
Creating the BPEL Process 208

Creating a Composite Application 223

Table of Contents

[iv]

Part A - The Approach 224
Testing Part A Source 229

Part B – Using Multiple Partners 231
Testing Part B Source 239

Part C – Writing to File 240
Testing Part C Source 247

Part D – Sending JMS Messages 247
Testing Part D Source 251

Part E – Conditions and Sequence 252
Testing Part E Source 261

Part F – Sending Mails 262
Testing Part F Source 266

Part G – Event Processing 267
Summary 274

Chapter 11: Composite Applications 275
Role of Composite Applications 275
NetBeans Project Types 276
Workspace 277
Non-Hierarchical Model 279

CASA Editor 280
Summary 281

Index 283

Preface
Composite applications aid businesses by stitching together various componented
business capabilities. In the current enterprise scenario, empowering business
users to react quickly to the rapidly changing business environment is the top most
priority. With the advent of composite applications the 'reuse' paradigm has moved
from the technical aspect to the business aspect. You no longer re-use a service
but re-use a business process. Now, enterprises can define their own behaviors
optimized for their businesses through metadata and flows. This business process
composition has become increasingly important for constructing business logic.

The ability of composite applications to share components between them nullifies
the distinction between actual applications. Business users should be able to move
between the activities they need to do without any actual awareness that they are
moving from one domain to another.

The composite application design enables your company to combine multiple
heterogeneous technologies into a single application, bringing key application
capability within reach of your business user. Enterprises creating richer composite
applications by leveraging existing interoperable components increase the
development organization's ability to respond quickly and cost-effectively to
emerging business requirements. While there are many vendors offering various
graphical tools to create composite applications, this book will focus on OpenESB
and NetBeans IDE for designing and building composite applications.

This book introduces basic SOA concepts and shows how you can use NetBeans and
OpenESB tools to design and deploy a composite application. After introducing the
SOA concepts, you are introduced to various NetBeans Editors and aids that you
need to understand and work with to design a composite application. The last part
of the book deals with a full fledged incremental example on how you can build
a complex composite application with necessary screen shots accompanied by the
source code available on the website.

Preface

[2]

What This Book Covers
Chapter 1 introduces SOA and BPEL to the readers with simple examples and gives an
overview of the JBI components and runtime required to build composite applications.
This chapter also gives you an overview of the need for SOA-based applications in
companies by depicting an example of an imaginary AirlinesAlliance system.

Chapter 2 shows you how you can quickly setup NetBeans IDE and other runtime
environments including OpenESB runtime and BPEL engine. There are many
software/tools mentioned in this chapter that you need to download and configure
to get started building composite applications using NetBeans.

Chapter 3 provides an overview of Java Business Integration (JBI) and the Enterprise
Service Bus (ESB). You will learn about JBI Service Engines and how they are
supported within the NetBeans IDE.

Chapter 4 introduces JBI Binding Components and how they provide protocol
independent communication between JBI components. You will also learn about the
support that the NetBeans IDE provides for Binding Components.

Chapter 5 introduces the NetBeans BPEL Designer that comes bundled with the
NetBeans IDE. You will also be introduced to the graphical tools/wizards and
palettes available for creating BPEL files.

Chapter 6 provides an overview of WSDL and how WSDL documents are formed.
You will learn about the use of WSDL in enterprise applications and the WSDL
editor within the NetBeans IDE

Chapter 7 covers the XML schema designer and shows how it aids rapid development
and testing of XML schema documents.

Chapter 8 provides you an overview of the Intelligent Event Processor (IEP) module
and the IEP Service Engine that can be acquired from the OpenESB software bundle.
This chapter also shows the need for an event processing tool through simple
composite application examples.

Chapter 9 provides details of fault handling within a BPEL process and shows how
these can be managed within the NetBeans IDE by using graphical tools.

Chapter 10 shows you how you can build simple to complex composite applications
and BPEL processes using the NetBeans IDE. The examples in this chapter are divided
into several parts and the source code for all parts is available in the code bundle.

Chapter 11 gives you the overall picture of the composite application and the need for
a composite application to deploy your BPEL processes. The composite application
support provided in NetBeans IDE comes with a visual editor for adding and
configuring WSDL ports and JBI modules.

Preface

[3]

What You Need for This Book
Java SE 5 or higher
OpenESB Components
NetBeans 6 + OpenESB Addons Bundle

Who is This Book for
This book is for enterprise developers and architects interested in using NetBeans
IDE and OpenESB tools to build their SOA-based applications.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "message
sayHelloRequest has been defined"

A block of code will be set as follows:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWSDL"
 targetNamespace="http://j2ee.netbeans.org/wsdl/HelloWSDL"
 xmlns="http://schemas.xmlsoap.org/wsdl/"

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

 <message name="sayHelloReply">
 <part name="outputMessage" type="xsd:string"/>
 </message>
 <message name="sayHelloFault">

 <part name="faultMessage" type="xsd:string"/>
 </message>

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"From the New Project wizard, select SOA | BPEL Module".

•

•

•

Preface

[4]

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/2622_Code.zip, and select this book
from the list of titles to download any example code or extra resources for this book.
The files available for download will then be displayed.

The downloadable files contain instructions on how to use them.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Enterprise Application
Development

Organizations are rapidly moving towards an information-driven business model
that exerts a lot of pressure on the response time. Response time is the primary issue
for organizations adopting new technologies. Any Business process model designed
by an organization should be flexible, extensible, and reliable primarily to tackle the
"information burst" experienced by most enterprises.

The objective of this book is to help enterprise application architects and developers
understand various Service Oriented Architecture (SOA) tools available as part
of the NetBeans IDE thus, enabling them to build an enterprise grade, scalable
application in a short period using a single development interface.

In this chapter, we will be discussing the following topics:

SOA concepts
Introduction to various BPEL Processes
Composite Applications and JBI
AirAlliance—our sample application

According to Gartner Inc., enterprises will eventually adopt SOA for their business
critical processes, sooner or later. Although architects have been discussing and
implementing SOA for the past several years, practicing SOA is still new, and
generally requires the utmost care in application design when compared to other
similar architectures. SOA always emphasizes on distributed architecture spanning
multiple web services and applications that are part of a different heterogeneous
category of applications. This in turn adds additional complexity to the whole
system. If you do not carefully connect your various business applications through a
set of well defined processes, it will lead to data chaos and breakdowns.

•

•

•

•

Enterprise Application Development

[8]

Not all SOA implementations you see today are tuned for maximum performance.
In fact performance was always a key issue when considering SOA for business
integration. When SOA principles are applied too rigidly, you can expect some
run-time issues. Hence it is better not to go by any book or guidelines and instead, to
adopt your own SOA-based system that is scalable and reliable for your needs. The
primary factor that you need to understand is that SOA is a paradigm shift in doing
business and requires a complete comprehension of the events, processes, and fault
endpoints that occur in your enterprise.

Developing enterprise applications is much more than just building a system that
can process and share data between web services and various clients. Consider, for
example, an airlines reservation web service that processes the guest itinerary. If a
reservation cannot be made, it should have the capability of contacting a partner
airline's web service and then process the itinerary. If the itinerary processing is
successful, it should confirm the booking to the client. Now, there is more than
one type of enterprise system involved. Which part of your enterprise system will
orchestrate the transaction? Who will set the guidelines for fail-safe communication?
There is a clear need for a "middle man" or a "centralized web service" to orchestrate
these disparate web services to make the reservation process successful and fail-
safe. BPEL (Business Process Execution Language) is widely accepted as an industry
standard for orchestrating web services to perform meaningful business processes.

This book focuses on using a particular BPEL implementation for solving business
integration problems. This implementation is the BPEL Service Engine from the
OpenESB project at https://open-esb.dev.java.net/.

Project OpenESB implements an Enterprise Service Bus runtime using Java Business
Integration (JBI) as the base. This allows easy integration of web services to create
loosely coupled enterprise class composite applications.

SOA and POA
Today, most companies are considering SOA and web services as a viable business
process model to address the integration needs for building a robust enterprise
application. While SOA has become a model to implement and solve integration
problems, many companies are still confused about implementing SOA as there
appear to be a myriad of ways to implement an SOA-based model. Also there are
companies that already have a time tested solution implemented and would like
to move to the much extensible SOA model. SOA and POA based applications
enable businesses by leveraging existing web services and by minimizing the cost of
deploying new services.

Chapter 1

[9]

The primary objective of designing an enterprise application is to glue together
different services to suit a particular business need. However, there is a bigger
challenge involved in designing this whole system wherein introducing new services
or modifying existing services should not affect the system to a larger extent. This
can only be achieved when you have a set of business processes that can orchestrate
the system, making the services communicate with each other at the right time.
Hence, orchestrating services through BPEL has become a much acclaimed solution
for designing enterprise applications. BPEL is emerging as the clear standard for
composing multiple synchronous and asynchronous services into collaborative and
transactional process flows.

Web Service

Web Service

Service
Orchestration Point

Client

Web Service

Well designed SOA-based applications reduce the cost and complexity of
implementing business processes that cater to all the connected partners including
customers, suppliers, and other clients. Prior to the SOA-based model, many
businesses found this objective almost unattainable, because technical roadblocks
made it difficult to offer a business process as a service that could be universally
shared by its target community of users. The Web has demonstrated that universal
access is not only possible but is now a fact of business life, and has proven that a
combination of open protocols, tools, and infrastructure can create great value for the
business community. The SOA extends this value to cover the creation and sharing
of business processes, utilizing web protocols, tools, and infrastructure to meet this
new objective. The challenge is to find the Service Orchestration Point for hosting
the business processes that interact with heterogeneous services and provide a
seamless and quick solution to the customers.

Enterprise Application Development

[10]

Introduction to Various BPEL Processes
A business process is the procedure that an organization uses to achieve a larger
business goal. A business process is actually a series of individual tasks, and
each task is executed in a specific order. Business Processes are synchronous or
asynchronous, depending on the method you choose to invoke your business
process. A synchronous business process can contain asynchronous operations, but
they must be added after the starting event in the process flow. That is, at runtime
the processes are executed after the synchronous starting event is complete.

As an integral part of the NetBeans SOA tools, business processes provide the
primary means through which enterprise services are integrated. NetBeans SOA
tools features the BPEL Designer, which has been formulated so that architects can
easily create complex composite applications involving web services without much
programming effort. To this end, you can easily create and develop a business
process in an intuitive graphical programming environment called the BPEL
Designer and deploy it to a separate runtime environment for execution. This
runtime is the OpenESB runtime that is integrated with the GlassFish
application server.

The BPEL Process starts with a receive activity, proceeds with invoking external
services and finishes by replying back to the Client. A BPEL process typically
interacts with one or more external Web Services (the BPEL process is also a web
service). These external web services are called partner services.

Chapter 1

[11]

The above figure shows a preview of how a simple BPEL process can be designed
using the NetBeans BPEL Designer. In the above example, there are two partner
services, one is the BPEL client implementation and the other one is the web service
EJB implementation which has one operation processItinerary.

In order to understand the simple BPEL process, let us define some of the terms most
commonly used while designing a BPEL process.

Partner ServicesServices
Any external service or client that interacts with the BPEL process is called a partner
service. A process starts and ends somewhere, and involves the interaction of at least
one other outside partner. In the above example, the partner is the web service that
has the ability to process the client's request. The customer sends the guest itinerary
for processing. The BPEL process receives the itinerary, invokes a web service that
processes the itinerary, and returns the itinerary back to the customer. This simple
process helps us understand the BPEL activities that we will focus on later in this book.

Enterprise Application Development

[12]

Refer to Chapter 10 to learn how partner services can be designed and created
using NetBeans.

Activities
Activities are the individual business tasks within the process that compose the
larger business goal. In the previous screenshot, activities represent each step in the
process. Thus the most common activities are Receive, Invoke, Assign, and Reply.
For more information on the BPEL activities supported in the BPEL Designer, refer
to Chapter 5.

Variables
In the previous example, between the Receive and the Invoke activity, we are
assigning the guest itinerary elements to a new variable. (Assigning Guest name,
travel date, preferred class.) This is basically a copying process (creates an XPath
expression in the BPEL file) and it can be done visually using the NetBeans BPEL
Mapper (explained in Chapter 5). Variables store the data that are used by the
business process.

As we discussed earlier, the partner service interacts with the business process for
the purpose of receiving a message in response to a request.

Customer
Enumerate the list of airlines

Reservation Request

Reservation Confirmation

Pause

Airlines

The above figure depicts a typical asynchronous and synchronous business process.
An asynchronous process is used when the BPEL process is long-running. The
results are returned to the client by performing an invocation on the client. Thus the
customer asks for reservation and disconnects. The business process processes the
requests and gets back to the customer. It is more like a "Leave a message and we
will get back to you" kind of setup. This pause does not happen with a synchronous
business process, wherein the customer waits indefinitely to get the response. A
classic example is the reservation process.

Chapter 1

[13]

However, there is a caveat here. The BPEL process is shared and is not a singleton.
Many customers work with the same business process. There should be a way for the
business process to identify its customers.

Customer

NA. Itinerary NumberProvide

Process Reservation

Reservation Confirmation

Send Itinerary Number

Pause

Airlines

The above figure depicts an example wherein the customer sends a reservation
request for a particular airlines' destination on a particular date. The business
process, after communicating with the airlines' web service, finds out the reservation
cannot be processed. Hence it updates the customer itinerary with an itinerary
number that the customer can use later to send the reservation request.

This is how a correlation is used by the business process, to distinguish the customer
in their initial interaction so that they can recognize each other in the future. A
correlation is the record that the business process uses to keep track of multiple
partners in the same business process. NetBeans BPEL Designer lets you set
correlations for Invoke activities through a visual interface as discussed later
in this book. Note that the business process is able to manage multiple tasks, and
does not hang in a single business process waiting for it to conclude at the expense
of all other activities. Instead, while they are waiting for the itinerary number to
arrive, the process conducts similar business, using the same business process with
other customers.

Since multiple clients can use the same business process, it is possible that each
application implementation may desire slight variations of the same business
process. Therefore, it is important that business processes have points-of-variability.
Thus giving the user of the composite application the ability to configure the
business process to their specific requirements.

Enterprise Application Development

[14]

A Business process can also be abstract in the sense that the appropriate business
logic to make decisions is defined, but the sensitive information needed to choose a
course of action is hidden from the process partners. An abstract process is basically
a description of a business process, and cannot be run on the server, unlike an
executable business process. We will discuss these processes in the coming chapters.

Consider the following guidelines for creating BPEL processes:

Support multiple clients—your business process should be able to process
multiple clients simultaneously. So make sure that you have correlations set
on messages.
Intelligent event processing—you need a real-time business event collection
and processing mechanism to create an efficient process.
Secure your business processes—we are talking about enterprise systems.
You had better secure your business processes. This is quite easy using the
Identity enabled web services support in NetBeans.
Create re-usable partner services—make sure that partner services are
reusable and can be used across different business processes. For example,
the getItinerary operation of an airlines web service will be used by multiple
business processes.

Why do you need to consider BPEL for orchestration? In a complex business
transaction, just developing web services and exposing their functionalities over
WSDL is not enough. Sequence of execution and branching in case of failures
and other events are critical to business transactions. Sequencing and conditional
behavior are the strengths of BPEL.

BPEL does the following for your business transactions:

1. Coordinates asynchronous communication between different web services.
A client requests for a flight reservation and the BPEL process interacts with
various partner services to process the reservation.

2. Manipulates data before exchanging between different services. The BPEL
process can check, verify, and modify data from the client before sending
requests to partner services. A classic example of data manipulation is an
intelligent event processing mechanism.

•

•

•

•

Chapter 1

[15]

3. Conditional and parallel processing is possible with BPEL services. If a
reservation with one airline is not available, the BPEL process can send the
reservation request to another partner airlines web service.

4. BPEL process can undo or compensate at any state in its life cycle.
5. Support long running business processes.

Composite Applications and JBI
A composite application is an accepted solution that addresses a specific business
problem by bringing together business logic and data sources from multiple
underlying systems. Typically a composite application will be associated with one or
many business processes, and may bring together several process steps, presenting
them to the client through a single interface that is customized to the requirements of
the business need.

SOA describes a category of composite applications composed of service provider
and service consumer components that segregates business logic and offers location
transparency for the service providers and consumers. The SOA approach lets you
replace or upgrade individual components in the application without affecting
other components or the process as a whole. Moreover, you can independently
specify alternative paths through which the components in the application exchange
messages. The next couple of chapters in this book provide concepts and constructs
needed for building a composite application using the NetBeans SOA tools.

Our example application that we will be creating in this book is finally deployed as a
Java Business Integration (JBI) module in the JBI Runtime Environment provided by
GlassFish application server.

JBI runtime is integrated with Sun Java System Application Server and
the open-source GlassFish application server. This is the same JBI runtime
that was available as part of OpenESB project. OpenESB is also available
as an add-on in the Java Application Platform SDK.
The OpenJBI Components project on java.net is an incubator project
started to foster community-based development of JBI components that
conform to the Java Business Integration specification (JSR 208).

Enterprise Application Development

[16]

JBI is integrated with Sun Java System Application Server as a pre-configured
lifecycle module, which means that whenever the application server's instance starts
up, the JBI runtime will be available.

Client
JBI Message

Router

HTTP/SOAP Binding
Component

Application Server Bridge

Application Server

87

96

5
10

4
3
12
11

2

13

1

14

Java EE Service
Engine

BPEL
Service Engine

JBI Runtime Environment

There is no user interaction required to configure or start the JBI runtime. It is just
like any other service of the application server. Java EE Service Engine acts as
the bridge between Java EE applications and JBI. A Java EE application archive
(ear/war/jar) can be packaged in a JBI composite application and deployed as
one single entity. Service units belonging to other JBI components and Java EE
applications can share the same transaction and security contexts. JBI is built on a
web services model, and provides a pluggable architecture for a container that hosts
service producer and consumer components. Client and services connect to the
container via binding components or can be hosted inside the container as part of a
service engine.

Chapter 1

[17]

Java Business Integration (JBI) is a Java standard (JSR 208) for structuring
business integration systems along SOA lines. It defines an environment
for plug-in components that interact using a services model based directly
on WSDL 2.0.
Project OpenESB is an open-source implementation of JBI. It extends the
JBI specification by creating an enterprise service bus (ESB) from multiple
JBI instances. The instances are linked by a proxy-binding based on JMS.
This allows components in separate JBI instances to inter-operate in the
same fashion as local ones.

JBI defines standard packaging for composite applications that are composed
of service consumers and providers. Individual service units are deployable to
components; groups of components are gathered together into a service assembly.
The service assembly includes metadata for bonding the service units together, as
well as bonding service units to external services. This provides a simple mechanism
for performing composite application assembly using services.

AirAlliance Company
All that we have discussed so far is the general principles of SOA and BPEL
based business processes. To make things a little easier, we will attempt to discuss
various concepts covered in this book in the context of an imaginary airline called
AirAlliance.

The Problem
AirAlliance is the largest airline with 64 partner airlines working across 124
countries. AirAlliance attempts to build an enterprise application wrapper on top
of the 64 partner airlines web services so that travel reservation can be made across
airlines from a single web interface. The challenge is to build BPEL processes that
orchestrate different partner services to provide a seamless travel experience to
the customers.

The problem is how to build a global airline alliance enterprise system that offers
customers worldwide reach and a smooth travel experience. For the customer
querying on the flight status, baggage transfer, connection information and other
itinerary related information is through a single interface that connects to the
AirAlliance Web Service (BPEL Process). The itinerary processing and airlines
querying happens transparently.

Enterprise Application Development

[18]

Look at the following figure that depicts a simple business process:

Guest Itinerary

Process
Itinerary

Yes

Yes

No

No

NorthAir WS

SA-Check
Availability

NA-Check
Availability

Process Reservation

Update
Itinerary

Sync.
DB

Return Itinerary

SouthAir WS SA DB

NA DB

The client sends the Guest Itinerary for reservation processing. The business process
enumerates the travel preferences. These include the travel date, food preference,
seating preference, and information like maximum travel stop overs. It then finds a
suitable airline that matches the customer's preference. The above business process
does an availability check on partner airlines based on the travel preference. It then
updates the itinerary and sends it back to the client. Finally the airline's DBs are
synced to reflect the current seat status.

Note that NorthAir Web Service and SouthAir Web Service work independently of
each other and need not know that they are part of a business process or that they
are being orchestrated. This kind of process can be implemented in BPEL easily.
Throughout Chapter 10, we will discuss various business processes examples.

Chapter 1

[19]

In all the chapters of this book, we will use the same company as an example
(AirAlliance) and will design solutions to improve the architecture of our company.

The Enterprise Stack
Before proceeding with a solution for the AirAlliance problem, you need to
understand the tools stack that will be used in this book. Let us briefly discuss the
enterprise tools. In the following figure, the left side shows the tasks that you are
most likely to perform and the right side shows the tools that you use to perform
those tasks. The AirAlliance company collaborates with many partner airlines
through their web services. For designing and building web services, we'll be using
the NetBeans IDE's web service creation methods. For simplicity, all our airlines web
services are deployed as a stateless session beans.

Enterprise Application Development

[20]

Once you have the partner services ready, you will build the business processes that
interact with the partner services. Our business processes are implemented as BPEL
processes. There could be BPEL processes for each operation like Reservation BPEL
Process, Flight Information Business Process and Baggage Information Business
Process. We use the NetBeans IDE's BPEL Designer that comes with the NetBeans
Enterprise Pack for designing these processes.

When we have the business processes ready, we create JBI Modules so that they
can be deployed as a service assembly in the BPEL Engine. We use NetBeans's
Composite Application Module to build these deployable applications. Based
on the need, we might use the CASA Editor to edit the Composite Applications'
deployment descriptors. When we have the deployable enterprise application, we
deploy them to the Glassfish's BPEL Engine as a Service Assembly.

There is a robust visual tool for monitoring the business processes, message
transaction and status through a BPEL Process Monitor. You can also use the Java DB
for storing airline information. NetBeans has very good support for managing the
Java DB from the IDE.

So these are the required tools to get you started with building your
enterprise applications.

Summary
This chapter provided an overview of SOA and the need for SOA in enterprise
applications. SOA will mean different integration patterns to different companies.
There is not a single implementation of SOA that can be termed the best.
Implementing SOA in your enterprise applications depends mostly on your
business requirements.

BPEL is widely accepted as the means to orchestrate disparate web services
to conceive meaningful business processes. What BPEL does to your business
transaction is explained in this chapter with an imaginary airline. This chapter also
dealt with the need for SOA tools for rapidly building and deploying enterprise
grade applications. The tools used in this book are shipped with the NetBeans IDE
and the OpenESB 2.0 bundle.

The next couple of chapters introduce the NetBeans SOA Tools and the NetBeans
IDE and highlight various features and functionalities of the SOA Tools. Some of
these are the BPEL Designer, Activities Palette, BPEL Mapper, and XML Schema
Editors. All of them are available as part of the OpenESB-NetBeans bundle. Chapter
2 deals with the information that you need to quickly get started with these tools.

Getting Started
In Chapter 1, we discussed some general SOA concepts related to building scalable
enterprise applications. As we discussed earlier, there could be different ways of
implementing enterprise applications using different tools available in the market.
In this book, we will restrict our views on SOA to designing web services and focus
on the BPEL orchestration to perform complex business processes. We will build
Java EE-based web services and BPEL-based processes using the NetBeans IDE and
SOA tools available with NetBeans. Any detailed discussion on any tool, apart from
the SOA tools, could be considered as out of the scope for this book and is left to the
reader to compare and understand the differences.

In this chapter, we will discuss:

Getting the software
Setting up the environment
NetBeans projects
Enterprise tools and editors

Getting the Software
For enterprise application development using Java EE and web services, the most
commonly used IDE is the NetBeans IDE. We can obtain the NetBeans IDE as a
built-in feature in the following software:

NetBeans IDE 6.0
OpenESB

•

•

•

•

•

•

Getting Started

[22]

NetBeans IDE 6.0
You need to install NetBeans IDE 6.0 or higher to have the base IDE for creating Java
EE-based web services. The software can be obtained from http://www.netbeans.
org. Just follow the links specific to a version. NetBeans IDE 6.0 comes with SOA
capabilities and includes the GlassFish Application Server. NetBeans SOA tools
contains open-sourced features from Sun's Java Studio Enterprise and Java CAPS
products, as well as new features for creating composite applications, BPEL-based
web services, secure Java EE web services, and XML artifacts like XML schema and
WSDL. With these tools, you should be able to:

Visually Design: You will be able to visually design an XML schema and
visualize BPEL-based orchestration of web services using a flowchart-like
interface. Here you can concentrate on the design part while the IDE bothers
with the syntax and specification compliance.
Test: You should be able to test your composite applications without leaving
your design and development environment. In other words, a single interface
for building, testing, and deploying enterprise applications.
Secure Applications: You should be able to secure your enterprise
application using available identity solutions and built-in IDE tools.
Integrated BPEL Engine: You don't need a standalone application server for
deploying your web services. Most popular applications servers, including
GlassFish Application Server and the Sun Java System Application Server,
can be integrated and managed from the IDE. BPEL Engine is available as a
JBI Service Engine on both the servers.

OpenESB
You can also download the OpenESB bundle from the OpenESB project site:
https://open-esb.dev.java.net. The OpenESB bundle includes NetBeans IDE 6.0
along with GlassFish Application Server, SOA tools, and JBI components.

The following table compares the NetBeans 6.0 bundle and the OpenESB 2.0 bundle:

Functionality NetBeans 6.0 bundle OpenESB 2.0 bundle
BPEL–Support for BPEL-based business
processes—you can use the BPEL Designer
to design and implement processes that can
orchestrate Java EE-based web services.

Yes Yes

•

•

•

•

Chapter 2

[23]

Functionality NetBeans 6.0 bundle OpenESB 2.0 bundle
Composite Applications Support—BPEL
Modules can be combined into a composite
application and can be deployed as a
composite application to a JBI runtime.

Yes Yes. Support for
editing composite
applications.

Intelligent Event Processing—real-time
business event collection and processing.

No Yes

Editing XSLT Yes Yes
Editing WSDL Yes Yes

We recommend that you go with OpenESB 2.0 bundle

Setting up the Environment
In this book, we will assume that you have already installed the NetBeans IDE.
If you need help installing the NetBeans IDE, visit the NetBeans site at
http://www.netbeans.org/.

When you configure your environment successfully as per the installation document,
clicking on Servers in the Services tab will show you a list of available servers.
Right-click on GlassFish and select the Start option. This will initiate the GlassFish
startup process, which you will be able to see in the output screen. After GlassFish
Server is started, expand JBI | Service Engines and verify sun-bpel-engine and
other engines shown as follows:

Getting Started

[24]

NetBeans SOA bundle installs and configures the bundled GlassFish Application
Server and Sun Java System Access Manager. You need Sun Java System Access
Manager for managing identities.

When GlassFish Application Server is started, the BPEL Service Engine may not be
started automatically. However, when you deploy your first composite application,
the BPEL service engine starts automatically.

If you experience problems while installing or running the software, see the
list of issues for workarounds and known issues in the Release Notes at
http://www.netbeans.org/community/releases/60/relnotes.html.

Now that we have both the GlassFish Application Server and the IDE environment
setup, we need to start the Java DB database and check to see if we can connect to
any default DB. Use Tools | Java DB Database | Start Java DB Server to start the
integrated Java DB Server.

Some of the examples we build in this book use the Java DB as the data store. You
can use any JDBC-compliant DB for your projects. Starting from NetBeans 6.0, you
can also connect to PostgreSQL DB, which is most widely used by the community.
Java DB has an advantage of being completely managed from the NetBeans
run-time environment.

Chapter 2

[25]

NetBeans Projects
NetBeans add-ons are pieces of software that extend the functionality of the base
IDE. When NetBeans is installed with the SOA options, New Project types are
created that allow you to work with a specific enterprise artifact. The general
categories of NetBeans projects include Web, Enterprise, SOA, NetBeans Modules,
Java, JBI Components.

Getting Started

[26]

The NetBeans IDE offers comprehensive GUI support for building enterprise
applications and rich client applications on the NetBeans platform. Throughout
this book, we will be creating projects that belong to the Web, Enterprise, and SOA
categories. Starting from NetBeans 6.0, the following project types are supported:

1. BPEL Module: This project lets you create a BPEL Module that can hold
one or more BPEL processes. Refer to Chapter 5 on BPEL Designer for
more information.

2. IEP Module: This project lets you create an Intelligent Event Processing
Module, which may contain one or more intelligent event processors. The
IEP Module Projects works with Service Oriented Architecture or Composite
Application projects to generate service engine deployment assembly for
event processor deployment. Refer to Chapter 8 on IEP for more information.

3. Composite Application: This project lets you create a Composite
Application project, which may include one or more BPEL Modules, and
other types of Java Business Integration (JBI) modules.

4. SQL Module: You can create a CAPS SQL Module project from this option.
5. XSLT Module: Creates an empty XSLT Module project, which may contain

multiple XSLT services.

We will not be exploring other project types in order to restrict the focus of this book
to BPEL.

Summary
This chapter gave a detailed explanation about the software required for working
with this book along with the installation instructions. The next chapter describes the
Service Engines and other JBI components supported by OpenESB NetBeans bundle.

Service Engines
In Chapter 1, we introduced the concept of SOA applications, and introduced
BPEL processes and JBI applications. To gain a greater understanding of these
concepts and to enable us to develop enterprise level SOA applications, we need to
understand JBI in further depth, and how JBI components can be linked together.
This chapter will introduce the JBI Service Engine and how it is supported within the
NetBeans Enterprise Pack.

In this chapter, we will discuss the following topics:

Need for Java Business Integration (JBI)
Enterprise Service Bus
Normalized Message Router
Introduction to Service Engines
NetBeans Support for Service Engines
BPEL Service Engine
Java EE Service Engine
SQL Service Engine
IEP Service Engine
XSLT Service Engine

Need for Java Business Integration (JBI)
To have a good understanding of Service Engines (a specific type of JBI component),
we need to first understand the reason for Java Business Integration.

•

•

•

•

•

•

•

•

•

•

Service Engines

[28]

In the business world, not all systems talk the same language. They use different
protocols and different forms of communications. Legacy systems in particular can
use proprietary protocols for external communication. The advent and acceptance of
XML has been greatly beneficial in allowing systems to be easily integrated, but XML
itself is not the complete solution.

When some systems were first developed, they were not envisioned to be able
to communicate with many other systems; they were developed with closed
interfaces using closed protocols. This, of course, is fine for the system developer,
but makes system integration very difficult. This closed and proprietary nature
of enterprise systems makes integration between enterprise applications very
difficult. To allow enterprise systems to effectively communicate between each other,
system integrators would use vendor-supplied APIs and data formats or agree on
common exchange mechanisms between their systems. This is fine for small short
term integration, but quickly becomes unproductive as the number of enterprise
applications to integrate gets larger. The following figure shows the problems with
traditional integration.

As we can see in the figure, each third party system that we want to integrate with
uses a different protocol. As a system integrator, we potentially have to learn new
technologies and new APIs for each system we wish to integrate with. If there are
only two or three systems to integrate with, this is not really too much of a problem.
However, the more systems we wish to integrate with, the more proprietary code we
have to learn and integration with other systems quickly becomes a large problem.

To try and overcome these problems, the Enterprise Application Integration (EAI)
server was introduced. This concept has an integration server acting as a central
hub. The EAI server traditionally has proprietary links to third party systems, so the
application integrator only has to learn one API (the EAI server vendors). With this
architecture however, there are still several drawbacks. The central hub can quickly
become a bottleneck, and because of the hub-and-spoke architecture, any problems
at the hub are rapidly manifested at all the clients.

Chapter 3

[29]

Enterprise Service Bus
To help solve this problem, leading companies in the integration community
(led by Sun Microsystems) proposed the Java Business Integration Specification
Request (JSR 208) (Full details of the JSR can be found at http://jcp.org/en/jsr/
detail?id=208). JSR 208 proposed a standard framework for business integration
by providing a standard set of service provider interfaces (SPIs) to help alleviate the
problems experienced with Enterprise Application Integration.

The standard framework described in JSR 208 allows pluggable components to be
added into a standard architecture and provides a standard common mechanism for
each of these components to communicate with each other based upon WSDL. The
pluggable nature of the framework described by JSR 208 is depicted in the following
figure. It shows us the concept of an Enterprise Service Bus and introduces us to the
Service Engine (SE) component:

JSR 208 describes a service engine as a component, which provides business
logic and transformation services to other components, as well as consuming
such services. SEs can integrate Java-based applications (and other resources), or
applications with available Java APIs.

Service Engine is a component which provides (and consumes) business
logic and transformation services to other components. There are
various Service Engines available, such as the BPEL service engine
for orchestrating business processes, or the Java EE service engine for
consuming Java EE Web Services. We will discuss some of the more
common Service Engines later in this chapter.

Service Engines

[30]

The Normalized Message Router
As we can see from the previous figure, SE's don't communicate directly with each
other or with the clients, instead they communicate via the NMR. This is one of the
key concepts of JBI, in that it promotes loose coupling of services.

So, what is NMR and what is its purpose? NMR is responsible for taking messages
from clients and routing them to the appropriate Service Engines for processing.
(This is not strictly true as there is another standard JBI component called the Binding
Component responsible for receiving client messages. Binding Components are
discussed in Chapter 4. Again, this further enhances the support for loose coupling
within JBI, as Service Engines are decoupled from their transport infrastructure).

NMR is responsible for passing normalized (that is based upon WSDL) messages
between JBI components. Messages typically consist of a payload and a message
header which contains any other message data required for the Service Engine to
understand and process the message (for example, security information). Again, we
can see that this provides a loosely coupled model in which Service Engines have no
prior knowledge of other Service Engines. This therefore allows the JBI architecture
to be flexible, and allows different component vendors to develop standard
based components.

Normalized Message Router enables technology for allowing messages to
be passed between loosely coupled services such as Service Engines.

The figure below gives an overview of the message routing between a client
application and two service engines, in this case the EE and SQL service engines.

Chapter 3

[31]

In this figure, a request is made from the client to the JBI Container. This request
is passed via NMR to the EE Service Engine. The EE Service Engine then makes
a request to the SQL Service Engine via NMR. The SQL Service Engine returns a
message to the EE Service Engine again via NMR. Finally, the message is routed back
to the client through NMR and JBI framework. The important concept here is that
NMR is a message routing hub not only between clients and service engines, but also
for intra-communication between different service engines.

The entire architecture we have discussed is typically referred to as an Enterprise
Service Bus.

Enterprise Service Bus (ESB) is a standard-based middleware architecture
that allows pluggable components to communicate with each other via a
messaging subsystem.

Now that we have a basic understanding of what a Service Engine is, how
communication is made between application clients and Service Engines, and
between Service Engines themselves, let's take a look at what support the NetBeans
IDE gives us for interacting with Service Engines.

Service Engine Life Cycle
Each Service Engine can exist in one of a set of predefined states. This is called the
Service Engine life cycle.

Started
Stopped
Shutdown
Uninstalled

The figure below gives an overview of the life cycle of Service Engines:

•
•
•
•

Service Engines

[32]

Service Engines can be managed from the command line utility, asadmin, that is
supplied as part of the Sun Java System Application Server. The table below shows
some of the common commands that can be used to manage Service Engines:

asadmin list-jbi-
service-engines

Obtains a list of installed Service Engines
$>./asadmin list-jbi-service-engines

sun-aspect-engine

sun-bpel-engine

sun-dtel-engine

sun-etl-engine

sun-iep-engine

sun-javaee-engine

sun-script-engine

sun-sql-engine

sun-wlm-engine

sun-xslt-engine

Command list-jbi-service-engines executed
successfully.

asadmin show-jbi-
service-engine

Shows the status of an installed Service Engine
$>./asadmin show-jbi-service-engine sun-
bpel-engine

Component Information

Name : sun-bpel-engine

State : Shutdown

Description : This is a bpel service
engine.

asadmin start-jbi-
component

Starts a Service Engine
$>./asadmin start-jbi-component sun-bpel-
engine

Started component sun-bpel-engine.

asadmin stop-jbi-
component

Stops a Service Engine
$>./asadmin stop-jbi-component sun-bpel-
engine

Stopped component sun-bpel-engine.

Chapter 3

[33]

Service Engines can also be managed from within the NetBeans IDE instead of using
the asadmin application. We will look at that in the next section.

Service Engines in NetBeans
As we discussed in Chapter 2, the NetBeans Enterprise Pack provides a version of
the Sun Java System Application Server 9.0 which includes several Service Engines
from the Open ESB project.

All of these Service Engines can be administered from within the NetBeans IDE
from the Services explorer panel. Within this panel, expand the Servers | Sun Java
System Application Server 9 | JBI | Service Engines node to get a complete list of
Service Engines deployed to the server.

Service Engines

[34]

The NetBeans Enterprise Pack 5.5 and the NetBeans 6.0 IDE have different Service
Engines installed. The following table lists which Service Engines are installed in
which version of the NetBeans Enterprise Pack:

Service Engine Name Description NetBeans 6.0 NetBeans 5.5
sun-aspect-engine Aspect Service Engine Yes No
sun-bpel-engine BPEL Service Engine Yes Yes
sun-dtel-engine DTEL Service Engine Yes No
sun-etl-engine ETL (Extract, Transform

and Load) Service Engine
Yes No

sun-iep-engine IEP (Intelligent Event
Processor) Service Engine

No No

sun-javaee-engine Java EE Service Engine Yes Yes
sun-script-engine Scripting Service Engine Yes No
sun-sql-engine SQL Service Engine Yes No
sun-wlm-engine WLM (Work List

Manager) Service Engine
Yes No

sun-xslt-engine XSLT Service Engine Yes No

In the previous section, we discussed the life cycle of Service Engines and how this
can be managed using the asadmin application. Using the NetBeans IDE, it is easy to
manage the state of a Service Engine. Right-clicking on any of the Service Engines
within the Services explorer shows a menu allowing the life cycle to be managed as
shown in the figure below:

To illustrate the different states in a Service Engine life cycle, a different icon
is displayed:

Chapter 3

[35]

Start

Stop

Shutdown

Uninstalled The service engine is not displayed in the list.

Now that we have a good understanding of what Service Engines are, and what
support the NetBeans IDE provides, let's take a closer look at some of the more
common Service Engines provided with the NetBeans Enterprise Pack.

BPEL Service Engine
Similar to all the other Service Engines deployed to the JBI Container within the Sun
Java System Application Server and accessible through NetBeans, the BPEL Service
Engine is a standard JBI Compliant component as defined by JSR 208.

The BPEL Service Engine enables orchestration of WS-BPEL 2.0 business processes.
This enables a work flow of different business services to be built as shown in the
following figure:

Service Engines

[36]

Within NetBeans, we can create BPEL modules which consist of one or more BPEL
processes. BPEL modules are built into standard JBI component, and then deployed
to the JBI container where the BPEL Service Engine allows the processes within the
module to be executed. In JBI terms, this is called a Service Unit.

A Service Unit is a deployable component (jar file) that can be deployed to
a Service Engine.

New BPEL modules are created in NetBeans by selecting the File | New Project
menu option and then selecting BPEL Module from the SOA category as shown in
the following figure:

Chapter 3

[37]

Within a BPEL module project, we add BPEL Processes. These processes describe the
orchestration of different services.

All the standard operations specified by WS-BPEL 2.0 Specification (like Providing
and Consuming Web Services, Structuring the processing logic, and performing
basic activities such as assignments and waiting) are available within the BPEL
Service Engine. The NetBeans designer provides simple drag-and-drop support for
all of these activities.

Consider, for example, a service for generating license keys for a piece of software. In
a Service Oriented Architecture, our system may consist of two services:

1. A Customer Service: this service would be responsible for ensuring that
license requests are only made by valid customers.

2. A License Generation Service: this service would be responsible for
generating valid license keys.

Within NetBeans, we can create a BPEL process that ties these services together
allowing us to return valid license keys to our customers and details of purchasing
options to non-customers.

Service Engines

[38]

Java EE Service Engine
The Java EE service engine acts as a bridge between the JBI container allowing
Java EE web services to be consumed from within JBI components. Without the
Java EE service Engine, JBI components would have to execute Java EE Web Services
via remote calls instead of via in-process communication. The Java EE Service
Engine allows both servlet and EJB-based web services to be consumed from
within JBI components.

The Java EE Service Engine provides several benefits when executing Java EE
Web Services.

Increased performance
Transaction support
Security support

These are explained in the following subsections.

•

•

•

Chapter 3

[39]

Increased Performance
Using the Java EE service engine enables Java EE web services to be invoked in
process within the same JVM, as the services are running. This eliminates the need
for any wire-based transmission protocols and provides increased performance.

Transaction Support
Using an in-process Communication Model between Java EE Application Server and
JBI container allows both web services and JBI modules to use the same transaction
model. Through multiple web service calls and calls to other JBI modules. For
example, BPEL processes can all use the same transaction.

Security Support
When executing Java EE Web Services from within the JBI container, the Java EE
Service Engine allows security contexts to propagate between components. This
removes the need to authenticate against each service.

SQL Service Engine
SQL service engine allows SQL statements to be executed against relational
databases and allows the results of SQL statements to be returned to the client
application or other Service Engines for further processing.

SQL service engine allows SQL DDL (Data Definition Language), SQL DML (Data
Manipulation Language), and stored procedures to be executed against a database.
This, therefore, allows different scenarios to be executed against the database. For
example, obtaining a customer's address or the number of outstanding invoices a
customer may have.

Within NetBeans, the SQL module is used to interact with the SQL Service Engine.
The SQL module project consists of three artifacts as follows:

configuration xml file (connectivityInfo.xml)
one or more SQL files containing distinct SQL statements
WSDL file describing the SQL operations.

•

•

•

Service Engines

[40]

SQL Modules are created by choosing File | New Project and then selecting the
SQL Module option from within the SOA projects category.

Within a SQL Module, there is a configuration file called connectivityInfo.xml
which contains connection details for the database. This can either be specified as a
driver connection or as a JNDI name for a data source.

<?xml version="1.0" encoding="UTF-8"?>
<connection>
 <database-url value='jdbc:derby://localhost:1527/db_name'/>
 <jndi-name value=''/>
</connection>

Each SQL statement that is to be presented to client applications as a new operation
must be stored in a separate SQL file. Using the example scenarios above, we would
have two SQL files with contents shown in the following table:

customer_address.sql select address1, address2, zip from
customer where customer_id=?

outstanding_invoices.sql select count(*) from invoices where
customer_id=? and isPayed=’n’

Chapter 3

[41]

In order for other JBI components to be able to access our SQL module, we must
have a WSDL file which describes the operations we have defined (customer_
address.sql and outstanding_invoices.sql). NetBeans will generate this file for
us when we select the Generate WSDL option from right-clicking on the project in
the Projects explorer.

SQL Service assembly units cannot be executed directly from within the JBI
container. To execute the SQL Service Unit, it needs to be added as part of
a composite application. This is then called a Service Assembly. Composite
applications are further discussed in Chapter 4.

Service Assembly: a deployable component (jar file) that consists of a
collection of Service Units.

IEP Service Engine
The Intelligent Event Processing service engine allows data to be read from an input
source and then processed into a format that can be used for a variety of different
purposes such as reporting or business intelligence information.

Service Engines

[42]

For example, an IEP project could be created that takes sales information from a
retail system, collects all information made over the last hour, and then outputs it to
a database table for reporting purposes. This would enable fast reporting based upon
a periodically updated subset of the business data. Any reporting queries performed
would therefore be "off-line" to the business database. This way different reporting
queries could be performed as and when necessary without any performance impact
on the business database.

Depending on the version of NetBeans that you have installed, you may not
automatically have support for creating and editing IEP projects. If you do not
have IEP project support within NetBeans, both the IEP service engine and
NetBeans editor support for IEP projects can be downloaded from http://www.
glassfishwiki.org/jbiwiki/attach/IEPSE/InstallationGuide.zip.

New IEP modules can be created within NetBeans by selecting the File | New
Project menu option and then selecting the Intelligent Event Processing Module
option within the SOA category as shown in the following figure:

Chapter 3

[43]

After making the above selections, the second stage of the New Project wizard
allows the Project Name and the Project Location to be specified.

Finally, after creating the new IEP module, new Intelligent Event Processors can
be added to the project. This is achieved by right-clicking on the newly created IEP
project within the NetBeans Project pane and selecting the New | Intelligent Event
Processor menu option. Selecting this option displays the New Intelligent Event
Processor wizard which includes one page allowing the IEP File Name and Folder to
be specified.

Service Engines

[44]

The IEP Process Editor within NetBeans allows many different processing actions to
be performed on data. IEP Processes are defined using a drag-and-drop editor. The
Palette, which shows all of the operations that can be performed on data, is shown in
the following figure:

IEP Processes (Service Assemblies) cannot be executed directly from within the
JBI container. To execute IEP Processes, they need to be deployed into a Service
Assembly and added as part of a composite application. Composite applications are
further discussed in Chapter 4.

XSLT Service Engine
XSLT Service Engine enables transformations of XML documents from one format to
another using XSL stylesheets. The service engine allows XSL transformations to be
deployed as web services which can then be used by external clients.

Chapter 3

[45]

New XSLT modules can be built to run against the XSLT service engine by selecting
the File | New Project menu option and then selecting the XSLT Module option
from within the SOA category as shown in the following figure:

Several different types of files can be created within an XSLT Module to allow the
service engine to transform XML files from one format to another. XML Schema files
can be used to define XML within the transformation process. WSDL files are used
to define the operations that are transformed within the service engine. We won't
discuss how WSDL files and XML Schema files are created and maintained in this
chapter, however, we will discuss them in full detail later in this book.

The final type of file that can be specified within an XSLT Module is an XSLT
Service. These types of files can be created by right-clicking on the XSLT Module
within the Project explorer in NetBeans and selecting the New | XSLT Service menu
option. The result is shown in the next screenshot.

When creating an XSLT Service Unit, two different processing modes (Service type)
are available:

Request-Reply Service
Service Bridge

•

•

Service Engines

[46]

The Request-Reply Service mode enables an XML message to be received from a
client, transformed, and then sent back to the original client.

The Service Bridge mode enables an XML message to be received from a client and
transformed into a different format. The transformed message is then used as an
input for invoking a service. The output of this service is then transformed using a
second XSL stylesheet and returned to the original caller. The Service Bridge mode
is therefore acting as a bridge between two services. This is an implementation of the
Adapter Pattern as defined in Design Patterns—Elements of Reusable Object-Oriented
Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

When creating a Request-Reply Service, the New XSLT Service wizard allows the
web service for the XSLT transformation to be specified including details of the port,
the operation being executed and the input and output types of the operation as
shown in the following two screenshots:

Chapter 3

[47]

Service Engines

[48]

When creating a Service Bridge service, the two web services to be bridged are
specified by first selecting the WSDL for the implemented web service and then for
the invoked web service.

Having selected the web services to bridge, the wizard allows the implemented and
invoked web services to be fully specified. Here we need to specify the operation
from our implemented service and the operation to call on the invoked service.

Chapter 3

[49]

Summary
In this chapter, we have introduced the concept of a Service Engine and given
an overview of the Service Engines installed with the NetBeans Enterprise Pack
(the BPEL, Java EE, SQL, IEP, and XSLT Service Engines). We've learned that
Service Engines:

provide business logic functionality to their clients
can be consumers and/or providers
run within a Java Business Integration (JBI) Server
expose their interfaces via WSDL
communicate within an Enterprise Service Bus via messaging

We've also discussed some basic concepts about JBI such as the Normalized Message
Router, Service Assemblies, and Service Units. We have a good understanding of
JBI, some of the problems with Enterprise Application integration and why JBI is
useful. In the next chapter, we extend our knowledge of JBI and SOA application
development with NetBeans by describing another standard JBI component—the
binding component.

•

•

•

•

•

Binding Components
In Chapter 3, we introduced the need for JBI and discussed JBI concepts and
components—Service Engines. In this chapter, we will take a closer look at JBI
components, discuss binding component (BC), and look at the support that NetBeans
Enterprise Pack provides for these components.

In this chapter, we will discuss:

The role of binding components in JBI Container
NetBeans Support for binding components
File BC
SMTP BC
SOAP BC
JDBC BC
JMS BC
FTP BC

Binding Components
In Chapter 3, we discussed how Service Engines are pluggable components which
connect to the Normalized Message Router (NMR) to perform business logic for
clients. Binding components are also standard JSR 208 components that plug in to
NMR and provide transport independence to NMR and Service Engines. The role of
binding components is to isolate communication protocols from JBI container so that
Service Engines are completely decoupled from the communication infrastructure.
For example, BPEL Service Engine can receive requests to initiate BPEL process
while reading files on the local file system. It can receive these requests from SOAP
messages, from a JMS message, or from any of the other binding components
installed into JBI container.

Binding Component is a JSR 208 component that provides protocol
independent transport services to other JBI components.

•
•
•
•
•
•
•
•

Binding Components

[52]

The following figure shows how binding components fit into the
JBI Container architecture:

In this figure, we can see that the role of BC is to send and receive messages both
internally and externally from Normalized Message Router using protocols,
specific to the binding component. We can also see that any number of binding
components can be installed into the JBI container. This figure shows that like Service
Engines (SE), binding components do not communicate directly with other binding
components or with Service Engines. All communication between individual binding
components and between binding components and Service Engines is performed via
sending standard messages through the Normalized Message Router.

NetBeans Support for Binding
Components
The following table lists which binding components are installed into the JBI
container with NetBeans 5.5 and NetBeans 6.0:

Binding Component NetBeans 5.5 NetBeans 6.0
File BC No Yes
HTTP BC No Yes
JDBC BC No No
JMS BC No Yes
SOAP BC Yes No
SMTP No No

Chapter 4

[53]

As is the case with Service Engines, binding components can be managed within the
NetBeans IDE. The list of Binding Components installed into the JBI container can
be displayed by expanding the Servers | Sun Java System Application Server 9 |
JBI | Binding Components node within the Services explorer.

The lifecycle of binding components can be managed by right-clicking on a binding
component and selecting a lifecycle process—Start, Stop, Shutdown, or Uninstall.

Binding Components

[54]

The properties of an individual binding component can also be obtained by selecting
the Properties menu option from the context menu as shown in the following figure.

Now that we've discussed what binding components are, and how they
communicate both internally and externally to the Normalized Message Router, let's
take a closer look at some of the more common binding components and how they
are accessed and managed from within the NetBeans IDE.

File Binding Component
The file binding component provides a communications mechanism for JBI
components to interact with the file system. It can act as both a Provider by
checking for new files to process, or as a Consumer by outputting files for other
processes or components.

Chapter 4

[55]

The figure above shows the file binding component acting as a Provider of messages.
In this scenario, a message has been sent to the JBI container, and picked up by
a protocol-specific binding component (for example, a SOAP message has been
received). A JBI Process then occurs within the JBI container which may include
routing the message between many different binding components and Service
Engines depending upon the process. Finally, after the JBI Process has completed,
the results of the process are sent to File Binding Component which writes out the
result to a file.

The figure above shows the file binding component acting as a Consumer of
messages. In this situation, the File Binding Component is periodically polling the
file system looking for files with a specified filename pattern in a specified directory.
When the binding component finds a file that matches its criteria, it reads in the file
and starts the JBI Process, which may again cause the input message to be routed
between many different binding components and Service Engines. Finally, in this
example, the results of the JBI Process are output via a Binding Component.

Of course, it is possible that a binding component can act as both a provider and
a consumer within the same JBI process. In this case, the file binding component
would be initially responsible for reading an input message from the file system.
After any JBI processing has occurred, the file binding component would then write
out the results of the process to a file.

Binding Components

[56]

Within the NetBeans Enterprise Pack, the entire set of properties for the file binding
component can be edited within the Properties window. The properties for the
binding component are displayed when either the input or output messages are
selected from the WSDL in a composite application as shown in the following
figure. (Don't worry if you don't understand the WSDL editor and its role in SOA
applications yet. In Chapter 6 we'll describe the WSDL editor in depth. Then in
Chapter 10, we'll bring all of the SOA concepts learned together, and describe how to
use them to build a complete business application.)

The entire set of properties that are configurable for an instance of a file binding
component is shown in the next screenshot. You probably won't need all of
the properties within your applications, so we've described some common
properties that you will probably need to access in applications where you use file
binding components.

fileName: Specifies the input or output filename (depending on whether
the binding component is acting as a consumer or a provider). If the
fileNameIsPattern property is set to true, the markers %d, %u and %t can be
specified within the filename to represent numbers, uuid's, and date and
times respectively. These file patterns act differently when the file binding
component is being used in a consumer or provider capacity.

Consumer Provider

%d Pattern matches any integer number. Replaced by sequential integer starting at 0.
%u Pattern matches any string. Replaced by a generated UUID
%t Pattern matches any date and time

(yyyyMMdd-HH-mm-ss-SSS)
Replaced by current timestamp
(yyyyMMdd-HH-mm-ss-SSS)

pollingInterval: Specifies the time in milliseconds between polling the file
system when acting as a consumer. The default time is always set to 1s.

•

•

Chapter 4

[57]

multipleRecordsPerFile: When acting as a consumer, the property specifies
whether there are multiple messages in the input file. When acting as a
provider, this property specifies whether multiple output messages will be
stored within the output file by appending messages to the output file every
time they are generated.
archive: Specifies whether input messages are archived to the
archiveDirectory after being processed.

SMTP Binding Component
The SMTP Binding Component provides email services to the JBI Server and can
act as either a provider by receiving inbound SMTP messages or as a consumer by
sending SMTP email to external email addresses.

•

•

Binding Components

[58]

Neither NetBeans Enterprise Pack 5.5 nor the NetBeans 6 SOA pack provide inbuilt
support for the SMTP binding component. This support can be downloaded from the
OpenESB project website (http://open-esb.dev.java.net/Downloads.html).

To add support for the SMTP binding component, the following packages need to
be downloaded:

smtpbc.jar: The actual SMTP binding component.
org-netbeans-modules-wsdlextensions-smtp.nbm: NetBeans Module
Support allowing SMTP binding editing for WSDL files.
javax-mail.nbm: NetBeans Modules Support for email.

Smtpbc.jar can be downloaded from the Components section of the OpenESB
project website, whereas the NetBeans modules can be downloaded from the
Developer Tools section.

Install the binding component (smtpbc.jar) into the application server by
right-clicking on Servers | Sun Java System Application Server 9 | JBI | Binding
Components and selecting the Install New Binding Component menu option.

After installing the SMTP binding component into the application server, we can
install developer support into the NetBeans IDE. This is done by installing the two
new NetBeans modules (org-netbeans-modules-wsdlextensions-smtp.nbm and
javax-mail.nbm) through the NetBeans Update Manager or Plugin Manager. This
developer support allows SMTP to be chosen as the Binding Type for WSDL bindings.

•

•

•

Chapter 4

[59]

When the binding component is acting as a Provider, standard properties (such
as who the message is from, who it is addressed to, the subject and body of the
message) can be read from the message and converted into a WSDL message. This
then allows any of these properties to be used within a JBI process. For example,
an input message sent via an email could be processed differently depending on
who it is addressed to or what the subject of the email is. If the design time support
for the binding component is installed into NetBeans (as discussed earlier in this
section), then all of these email properties can be edited as part of the WSDL message
structure, shown as follows:

If the binding component is acting as a Consumer, it is responsible for sending emails
via SMTP. In this situation, the mailto: protocol (RFC 2368) is fully supported.
This allows emails to be sent to specified email addresses and also sent to cc and bcc
addresses. Support is also provided for SMTP servers that require authentication (in
the form of the username and password parameters). SSL Support is also provided
(useSSL) for situations where the remote email server requires the secure sockets layer.

Binding Components

[60]

When the design time modules for the binding component are installed into
NetBeans, then the properties for outgoing SMTP messages can be edited within the
WSDL message structure, shown as follows:

FTP Binding Component
The FTP binding component provides FTP transport services to the JBI container
allowing messages to be received and sent via the FTP protocol. The component
can act as a consumer or a provider and supports the FTP protocol as described by
RFC 959.

When the binding component is acting as a consumer, it functions in a similar
fashion to the file binding component in that it polls periodically for files based
upon a given file name or file name pattern. The difference however, is that the FTP
binding component polls specified FTP sites rather than the local file system. After
a file is polled by the binding component, the contents of the file are routed as a
standard message into the JBI framework. These inbound messages are then routed
via the Normalized Message Router to other binding components and/or Service
Engines as defined by the JBI process.

The binding component can also act as a provider and in this instance it is
responsible for routing JBI messages to a specified FTP address. Depending upon
the complexity of your JBI process, the FTP binding component can act as both a
consumer and provider all within the same service assembly.

Chapter 4

[61]

If you are running your SOA application behind a firewall, the FTP binding
component can be configured to use a proxy server to allow access outside the
firewall. The binding component supports SOCKS4 and SOCKS5 proxy servers.
The proxy server support for the binding component is defined at a global level
against the binding component itself, rather than defined within the WSDL bindings
within a service assembly. The proxy is configured within NetBeans by setting
the Proxy URL, Proxy User ID, and Proxy User Password properties on the
binding component.

In addition to setting the proxy details, you can specify the maximum number of
simultaneous threads the binding component can use. This can be done by using the
Outbound Threads Number property. The default value for the number of threads
is 10, but you will need to configure this value depending on the number of users
accessing your SOA application, and the number of times that the FTP binding
component is called.

Binding Components

[62]

Neither the FTP binding component nor the support for FTP binding within the
WSDL editor is provided, by default, within the NetBeans 5.5 Enterprise Pack, or
NetBeans 6 SOA pack. To add support for these components, the following files
need to be downloaded from the OpenESB project website and installed in the same
way that we installed the SMTP binding component earlier in this chapter (that is,
to install the binding component into the application server and to install the FTP
Binding support into the WSDL editor as a NetBeans plugin).

ftpbc.jar: The actual FTP Binding Component.
org-netbeans-modules-wsdlextensions-ftp.nbm: NetBeans Module
Support allowing FTP binding editing for WSDL files.

Once we have installed these components into the Application Server and the
NetBeans IDE, we can start using the FTP Binding Component. Within a service
assembly, we can specify the WSDL binding to use the FTP binding component. The
properties window within the IDE allows us to modify the properties for the FTP
binding, enabling the connection details of the FTP connection to be specified, shown
as follows. The url property allows the address of the FTP server to be specified in
the standard ftp://username:password@host format. Several other properties
are available to control the connection, however, the most common that you will
probably need to modify are the dirListStyle and mode properties which allow the
host type and connection mode (Binary or ASCII) to be set.

The FTP message properties within a WSDL message are displayed in the IDE
properties window by selecting the operation within the WSDL bindings section of
the WSDL editor. This property window allows the message properties to be set.

•

•

Chapter 4

[63]

The common properties that you will probably need to set when using the FTP
Binding Component are:

messageRepository: directory name where messages are stored within the
FTP server. This base directory must have an additional directory structure
underneath it to enable the binding component to perform its processing.
The following sub-directories must be available:

/inbox: directory where inbound messages are stored.
/instage: directory where inbound messages are stored before
they are fully uploaded to the FTP server.
/inprotect: directory where inbound messages are stored to
stop them from being overwritten.
/inarchive: directory where inbound messages are stored
after they have been processed.
/outbox: directory where outbound messages are stored.
/outstage: directory where outbound messages are stored
before they are fully uploaded to the FTP server.
/outprotect: directory where outbound messages are stored to
stop them from being overwritten.
/outarchive: directory where outbound messages are stored
after they have been processed.

•

°

°

°

°

°

°

°

°

Binding Components

[64]

messageName: The name of the message file created within the
messageRepository. Inbound messages are prefixed by the value held in the
messageNamePrefixIB property, whilst outbound messages are prefixed by
the value held in the messageNamePrefixOB directory.
pollIntervalMillis: The time between polls of the FTP server in milliseconds.
archive: Boolean indicating whether messages are archived or removed after
being processed.
protect: Boolean indicating whether existing messages are moved to a
protected area before the current message is processed hence stopping the
existing message from being overwritten.

SOAP Binding Component
The SOAP binding component (also known as the HTTP binding component)
allows JBI messages to be sent and received using SOAP over HTTP and HTTPS.
The component supports RPC Literal, RPC Encoded, and Document Literal
encoding schemes.

The component can act as a consumer providing HTTP SOAP 1.1 Services externally.
This is achieved by using the embedded Grizzly HTTP connector.

The component can also act as a provider and in this situation is capable of
invoking external web services. The WSDL Editor within NetBeans provides
support for editing the WSDL bindings and allows the address of remote SOAP
servers to be specified.

In situations where the JBI container is running inside a firewall, the SOAP binding
component can be configured to use a proxy server to enable remote web services
outside the firewall to be accessed.

Many of the properties of the SOAP binding component are global to all service
assemblies within the JBI container that make use of the binding component.
NetBeans provides support for editing these properties directly within the IDE.

•

•

•

•

Chapter 4

[65]

The most common properties that you will probably need to configure in your
applications are:

Default HTTP Port Number: The port number for inbound SOAP requests
when the binding component is acting as a consumer of SOAP requests. The
default port is 9080.
Default HTTPS Port Number: The port number for inbound SOAP requests
when HTTPS is being used as the transport mechanism instead of HTTP. The
default port is 9181.
Non proxy hosts: This is a pipe | separated list that contains all the hosts
that will be contacted directly instead of through a proxy server if a proxy
is enabled.
Proxy Host: The specifies the name of the proxy server for outbound SOAP
requests. If the proxy server requires authentication, then the Proxy user
name and Proxy user password properties can be specified. The port number
of the proxy server can be specified using the Proxy port property.

•

•

•

•

Binding Components

[66]

JDBC Binding Component
In some situations, you will find that you need to interact with a database as part
of your JBI applications. When interacting with the database, we can use the SQL
Service Engine as described in Chapter 3. Alternatively, if you have more limited
database needs, you can use the JDBC binding component.

The JDBC binding component can act as a provider or a consumer. When acting as a
provider, the component can issue these different DML commands to the database
either to select information from the database or to change data:

Select
Insert
Update
Delete

When acting as a consumer, the component can poll specified tables on the database
to find newly inserted data. When new data is identified by the component,
this data can be routed into the JBI framework as a standard WSDL message to
other components. The JDBC Binding Component can connect to any database
that conforms to the JDBC 3.0 specification and can be accessed via a JNDI
datasource lookup.

The JDBC Binding Component is not supplied with the NetBeans 5.5 Enterprise Pack
or with the NetBeans 6.0 SOA pack, and must be downloaded separately from the
Open ESB project (http://open-esb.dev.java.net/Downloads.html). Similarly,
WSDL editor support can be downloaded from the open ESB project website. To
fully support the JDBC Binding Component, the following files must be downloaded:

jdbcbc.jar: The actual JDBC binding component.
org-netbeans-modules-wsdlextensions-jdbc.nbm: NetBeans Module
support allowing JDBC binding editing for WSDL files.

These additional components can be installed into NetBeans in the same way we
installed the SMTP binding component and WSDL support earlier in this chapter.

After installing the WSDL extensions for the JDBC Binding Component, you will
find that visual editing is provided within NetBeans for both consumer and provider
instances. The properties of the WSDL binding can be seen in the following figure:

•

•

•

•

•

•

Chapter 4

[67]

The WSDL editor provides support for editing the different properties that can be
specified for the binding component. The major properties that you will probably
need to edit when using this component are described as follows:

operationType: specifies what operation the binding component is
performing—poll, insert, update, find, or delete.
sql: sql that will be executed against the database. If the sql is a select
statement, then the numberOfRecords property specifies how many rows
are retrieved from the database.

PollingPostProcessing: After the database has been polled for new records,
the binding component can be requested to perform post processing on the
rows that have been polled. The PollingPostProcessing property can be set
to several different values:

Delete: polled rows are deleted after polling.
MarkColumn: The column specified by the
MarkColumnName property on the polled rows
will be updated to hold the value specified in the
MarkColumnValue property. This property can be checked
when the database is polled to ensure the existing data is not
continually re-polled.
MoveRow: polled rows of data are moved to the table
specified by the MoveRowToTableName property.
CopyRow: polled rows of data are copied to the table
specified by the MoveRowToTableName property.

•

•

•

°

°

°

°

Binding Components

[68]

PollMilliSeconds: time period in milliseconds between individual polls of
the database.
TableName: name of the database table that is being accessed in the
binding operation.

JMS Binding Component
The final binding component we are going to discuss in detail is the JMS
Binding Component.

The JMS Binding Component allows the JBI container to communicate with JMS
message queues and topics. The component can act as a provider and/or as a
consumer of JMS messages, and as such can subscribe to a topic and wait for JMS
messages, or it can send messages to a predefined Queue or Topic.

A JMS Queue allows messages to be consumed by only one client and is
a point to point type of messaging. A JMS Topic allows messages to be
consumed by any number of clients and is a publish or subscribe type
of messaging.

The binding component can send and receive JMS TextMessage's and MapMessage's.

The NetBeans Enterprise Pack provides design time support for the JMS Binding
Component and allows the binding attributes to be defined graphically within the
WSDL editor. The connection details of the JMS Message Server can be specified
within the service of the WSDL file.

connectionURL: This property allows the base address of the message server
to be specified. This can be in the format mq:// for the Sun Java Message
Queue system, or in the more generic jndi:// format where the message
queue is obtained via a JNDI lookup. The username and password properties
enable the connection details to be specified for the message server.
connectionFactoryName: If JNDI is being used to look up the message
server, then the connectionFactoryName property specifies the JNDI name
of the connection factory to use. The initialContextFactory and providerURL
properties provide the standard lookup configuration parameters for JNDI
lookups. If access to the message server is secured using JAAS, then the
securityPrincipal and securityCredential properties can be used to specify
the caller.

•

•

•

•

Chapter 4

[69]

For a specific JMS operation, it is necessary to specify whether the binding
component is connecting to a queue or a topic and whether transaction support is to
be used for the connection.

NetBeans provides editor support to enable these properties to be configured:

destination: name of the queue or topic that the binding component is to
receive messages from or send messages to.
destinationType: indicates whether the destination is a Queue or a Topic
transaction: specifies whether the JMS conversation will use NoTransactions
or whether it will be enrolled in a XATransaction. XA transaction support is
only enabled when the binding component is acting as a Consumer and is
receiving inbound messages.

•

•

•

Binding Components

[70]

Finally, the payload and type of a JMS message can be configured for a given
WSDL operation.

messageType: type of the message being sent or received from the specified
Queue or Topic. The messageType can be either TextMessage (for javax.
jms.TextMessage type messages) or MapMessage (for javax.jms.
MapMessage type messages).

Other Binding Components
Due to the standardized nature of the JBI Framework and JBI components, many
other JBI binding components have been written by the developer community, all of
which can be deployed to the Sun Java System Application Server or the GlassFish
Server. One such source of JBI components can be found in the OpenESB project
(https://open-esb.dev.java.net). The OpenESB project provides many different
binding components such as:

CICS Binding Component
MSMQ Binding Component
LDAP Binding Component

The full list of binding components available from the OpenESB project can be found
at https://open-esb.dev.java.net/Components.html.

•

•

•

•

Chapter 4

[71]

Summary
In this chapter, we've continued our discussion of the JBI framework and discussed
Binding Components and their role within the JBI Container. We've seen how the
Binding Component provides transport and protocol independence for other JBI
components. We've seen how this enables the JBI container to provide a highly
decoupled framework allowing developers and integrators to build resilient
SOA applications.

We continued to discuss the different binding components (namely file, FTP, SOAP,
JDBC, JMS and SMTP) that are either installed into the application server with the
NetBeans Enterprise pack or can be downloaded directly from the OpenESB project
web site. We also discussed that because binding components are developed to a
standard set of interfaces, any JBI compliant binding component can be installed into
the Application Server.

In the next chapter, we will expand our knowledge of developing SOA applications
with the NetBeans Enterprise Pack by taking a tour of the WSDL editor within
NetBeans—a key component for developing SOA applications.

BPEL Designer
Over the last couple of years, BPEL has rapidly emerged as the standard for
combining a set of services into a number of discrete and long running enterprise
processes. I have interacted with IT heads of several companies and found out
that they are either using BPEL or planning to use it over their other middleware
framework. Before considering BPEL, you need to clearly understand what BPEL is
and is not. BPEL, as I understand, deals only with the functional aspects of business
processes. It can only define the flow and scope of business transactions. It does
not offer any way to measure or manage processes, and there is no abstraction for
players or roles involved in the business processes, but different BPEL implementers
have extended it by adding these capabilities. For instance, Oracle's BPEL Process
Manager is capable of understanding workflow.

BPEL is still the ultimate standard for assembling a set of discrete services into an
end-to-end process flow. There are many tools available in the market that can
manage the lifecycle of business processes and also offers the support of authoring
and testing processes. Out of all of them, a BPEL Designer is a GUI-based tool that
lets you create complex business processes using BPEL constructs. One of those tools
is the BPEL Designer that comes with the NetBeans Enterprise Pack.

I cannot possibly discuss the merits of various BPEL Designers on the market, but
can say that NetBeans BPEL Designer lets you create and manage BPEL-based
business processes in a very elegant way.

In this chapter, let us discuss some points which include:

Why BPEL?
NetBeans BPEL Designer
Supported BPEL Elements
Runtime Integration
Design and Source Views
BPEL Palette
BPEL Mapper

•
•
•
•
•
•
•

BPEL Designer

[74]

BPEL for Business Process
BPEL is an XML-based execution environment intended to enable simple to complex
business process definitions for document-centric business processes. BPEL's goal is
to make it possible to write a business process once in BPEL and then run it on any
BPEL environment.

Throughout this chapter, we will talk much about 'processes', as the core of BPEL.
A BPEL process is just like any other process providing standard facilities such as
storage, scope, and fault endpoints. Commands given in a BPEL process are called
activities and the definition of a BPEL process consists of exactly one activity.

A process usually comprises multiple web services that work sequentially to
define a scope. Often, the output from one web service is fed into another web
service. Now, a web service can wait for its input from another web service like
an Airways Baggage Tracking System that sends a 'Request-for-Information' to all
available partner airlines and waits for the baggage information. It may even wait
for several hours. We need to understand that enterprise processes are long running
and complex. A major benefit of implementing a long-running process as a BPEL
process is that the persistence of the process can be provided by BPEL engine, greatly
simplifying the business logic.

Once we have a process up to a longer running life cycle, a number of inter-related
issues come to the forefront. One is synchronous versus asynchronous messaging.
Asynchronous messaging is more appropriate for longer-running processes because
it doesn't require connections to be maintained for unreasonable amounts of time
using unreasonable amounts of resources.

Chapter 5

[75]

BPEL, when used for defining business processes, has the following advantages:

1. Endpoint management: BPEL introduces the concept of partner links that
can be defined during design time. Partner links are a first-class concept in
BPEL, and can be manipulated directly in processes. BPEL provides a full
solution to endpoint management from the simple static deployment to the
dynamic resolution. It may depend on multiple factors, including technical
considerations as well as business logic.

2. High level of abstraction: BPEL provides such a high level of abstraction
that business analysts can compose and run executable business by working
with friendly modeling environments.

3. WSDL centric approach: The defining technical characteristic of a service
from a BPEL standpoint is that it can be described in a WSDL. Every
message exchange described in a BPEL process is in terms of portTypes and
operations which are defined in the WSDL. BPEL does not assume that
services are accessed via SOAP over HTTP.

4. Minimizes complexity: Complexity will remain an unavoidable part of the
enterprise technology landscape. Managing and minimizing this complexity
is the primary objective of BPEL.

Why is BPEL important for your business? Adopting BPEL is currently the only
elegant way to orchestrate existing web services into a meaningful
business process.

BPEL Designer

[76]

BPEL specification defines the syntax and semantics of the BPEL language, which
contains a variety of process flow constructs. Just as today's software development
tools include web services in their development capabilities, there also exist
easy-to-use tools to create and manage business processes using BPEL, such as the
NetBeans BPEL Designer. If your organization has the capability to utilize web
services for system integration, then a product to manage and control the resulting
business processes is critical. BPEL and web services now provide a standardized
integration interface, a language for integration, and process automation. BPEL, in
effect, has the potential to commoditize the capabilities provided by proprietary
EAI solutions.

By using BPEL to define business processes, companies can select processes and
services to incorporate into their operations. This provides flexibility to replace or
upgrade certain aspects of a business process without impacting the systems that are
working well. For instance, in our Airways application, airlines can participate and
opt out of the common reservation system anytime they want, without affecting the
customer interface.

BPEL processes specify the order in which participating web services should be
invoked. This can be done sequentially or in parallel. With BPEL, we can express
conditional behavior, like a web service invocation, that can depend on the result of a
previous invocation. We can also construct loops, declare variables, copy and assign
values, define fault handlers, and so on.

A BPEL process consists of steps, where each step is called an activity. BPEL
supports primitive and structured activities.

For its clients, a BPEL process looks like any other web service. When we define a
BPEL process, we actually define a new web service that is a composition of existing
services. The interface of the new BPEL composite web service uses a set of port
types, through which it provides operations like any other web service. To invoke a
business process described in BPEL, we have to invoke the resulting composite web
service also known as a composite application, as defined by JBI.

BPEL also supports compensation by undoing steps in the business process that have
already completed successfully. The goal of compensation is to reverse the effects
of previous activities that have been carried out as part of a business process that is
being revoked.

Chapter 5

[77]

Compensation is required in most business processes, which are long running
and use asynchronous communication with heterogeneous partner web services.
Business processes are often sensitive in terms of successful completion because
the data they manipulate is sensitive and they span multiple partners. So, it is very
important to ensure that business processes either fully complete or that the partial
results are compensated. BPEL supports the concept of compensation with the ability
to define compensation handlers, which are specific to scopes.

The <compensate> activity can execute the <compensationHandler>
of an immediate child <scope> by name or, by default, of all
immediate children in reverse order of completion. The execution
of a <while> loop creates one <compensationHandler> per
iteration. The <compensate> activity can only occur within a
<compensationHandler> or during fault handling.

If BPEL heavily depends on web services, what is the differentiator between web
services and BPEL? Web services are stateless while business processes require a
stateful model. When a client starts a business process, a new instance is created.
This instance lives for the duration of the business process. Messages sent to the
business process need to be delivered to the correct instance of the business process.
BPEL provides a mechanism to use specific business data to maintain references
to specific business process instances. This process is termed correlation. We will
discuss correlation in more detail later in this chapter.

BPEL Designer

[78]

Understanding BPEL Projects
NetBeans' BPEL Designer lets you to create and deploy BPEL processes which are
compliant with the WS-BPEL 2.0 specification. To perform these actions you need
to create a BPEL module, which is a NetBeans project type. The BPEL Designer
provides a complete environment to enable you to quickly and efficiently orchestrate
web services.

NetBeans IDE provides a BPEL runtime plug-in that provides the standard BPEL
runtime capability. The BPEL runtime that the IDE provides is a framework for
the execution content of BPEL: specifically, compiling BPEL, validating BPEL, and
assembling composite application descriptors. The BPEL runtime runs inside the Sun
Java System/GlassFish Application Server, which provides a container for the JBI
suite. Runtime services for executing BPEL-based applications are provided by the
BPEL Service Engine, which is a component of the JBI server. (Refer to Chapter 3 on
Service Engines). The BPEL Service Engine is started together with the Application
Server. Thus, before deploying and test running a Composite Application project,
you must make sure that the Application Server is started.

Chapter 5

[79]

BPEL Views
You can perform source level editing as well as visual designing, through the views
provided by the BPEL Designer. The BPEL Designer will perform round-trip two-way
engineering to ensure that the Design view and Source view remain synchronized
with each other. The IDE will automatically re-parse the BPEL source file and rebuild
the diagram every time you edit the BPEL file through the Source view.

BPEL Design view is the default view and it is the view that gets invoked
whenever you create a new BPEL module. To switch to the corresponding
place in the Source view, right-click an element in the Design view and
select Go to Source (Alt-O).

Source and Design View are always in-sync.

BPEL Designer

[80]

Design View
The Design view is the diagram view. The Design view and the Source view are
fully synchronized to do two-way forward and reverse engineering. If you use the
Design view to author your process, you will be restricted to adding some language
constructs that may not be supported by the BPEL runtime.

The Design view is a business process designer, where you can author a diagram of
your business process. In the Design view, you add, edit, and delete BPEL activities.
The diagram constructed in the Design view is automatically generated into BPEL
source code which is compliant with the WS-BPEL 2.0 specification. For a list of
supported BPEL 2.0 constructs refer to https://open-esb.dev.java.net/kb/
preview3/ep-bpel-se.html#BPEL.

Chapter 5

[81]

Source View
The Source view supports the entire BPEL 2.0 language specification as defined in
the BPEL schema. So, you can still add non-supported elements in the Source view.
When you switch back to Design view, the Design view renders those constructs in
the diagram because it has successfully reverse engineered from the Source view.
However, this is just a byproduct of the fact that this functionality was already built
into the Design view. When the validation system runs, it will flag these entries as
'Not supported by the runtime'.

See the above figure. We are configuring an Assign activity and copying variables.
You can either use Source view to type BPEL code (If you are comfortable with
BPEL) or use the visual editor to copy variables.

BPEL Designer

[82]

BPEL Mapper
BPEL Mapper allows you to add and edit functions that are specific for some
business process elements, such as Assign, If, and ElseIf. Each of these elements
can have specific expression types, such as copy assignments, condition expressions,
and time functions. For example, the If, ElseIf element of If, and Repeat Until
activities can have condition expressions, the Assign element includes copying
expressions, the Wait element can have duration expressions, and the ForEach
activity can have expressions with integer values. Using the BPEL Mapper's graphic
interface, you can perform calculations by assigning XPath operations and functions
to variables and to XSD elements, attributes, and parts. A simple variable copy
operation is shown in the following example.

You need to first click on the Assign activity in the Design view and switch to
Mapper view using the views button provided as shown in the above figure. For
copying values of variables, drag-and-drop from one variable to another.

The BPEL Mapper enables you to create a predicate that consists of XPath functions.
A predicate applies a condition to a node that can have multiple values. The result is
the subset of nodes that satisfy the condition. The BPEL Mapper has a menu bar that
shows a collection of XPath. These functions are based on the XPath 1.0 specification.

For mapping examples and more information on predicates and XPath
function reference, refer to The BPEL Mapper section of the Developers
Guide to the BPEL Designer available at http://www.netbeans.org/
kb/60/soa/bpel-guide-mapper.html.

Chapter 5

[83]

Palette
When you create a new BPEL module, NetBeans IDE automatically shows the
Activities Palette window. The Palette consists of BPEL activities that you can
drag-and-drop on the designer (Design view). The Palette activities are broadly
classified into three types, namely Web Service, Basic Activities, and Structured
Activities. The Palette will show only the BPEL 2.0 elements that are supported by
the Design view. However, you are free to go to the Source view to manually edit
the BPEL files (If you already know BPEL).

As already mentioned earlier in this book, the BPEL elements supported by the
Design view may vary from the BPEL support provided by the JBI runtime. Hence
most of the time, even if the Design view does not support a particular BPEL 2.0
element, you can still get it working in the process. The following figure shows the
BPEL activities palette:

Both the Basic Activities and Structured Activities nodes are not expanded by
default. Click on the [+] icon to expand the node.

When you drag-and-drop a Palette element into the BPEL diagram, it becomes a
BPEL activity. Click on any palette element and drag the element over the BPEL
diagram. Some point in the BPEL diagram will be highlighted in an orange color.
You are supposed to drop the elements only in those areas. For instance, you can
drag-and-drop an Invoke element only after a Receive element.

BPEL Designer

[84]

Web Service Activities
To be instantiated, an executable business process must contain at least one
<receive> or <pick> activity annotated with a createInstance="yes" attribute.
This is a general rule for creating an instance of your process. Most of the time, your
business process interacts with other web services and will exchange data then.
The BPEL process itself acts as a web service. This palette element provides all the
activities that a BPEL process needs while interacting with partner links.

Invoke
The Invoke activity enables the business process to invoke a One-Way or
Request-Response operation on a portType offered by a partner. The operation is
defined in the partner's WSDL file.

In our AirAlliance example, the business process invokes an operation exposed
by the NorthAir Web Service. The operation is called processItinerary. When you
drag-and-drop the invoke activity from the palette into the designer, you will get a
Property Editor window, where you can set Correlations, choose Partner Link, and
corresponding operations.

Chapter 5

[85]

Partner Links should have already been created to use the invoke activity. When you
drag-and-drop a web service into the designer, you will be prompted to create a new
Partner Link. Invoke is a web service call addressed to a service endpoint, or URL.
If the service is long-running, the calling process waits for a callback message in a
Receive or Pick activity, reporting that the task has completed and is returning
result data.

Correlation sets on Invoke activities deal with outbound operations. Invoke
activities are used to validate that outgoing messages contain data which is
consistent with the data contained within specified correlation set instances.
Correlation is the means by which the BPEL runtime tracks conversations between
a particular process instance and corresponding instances of its partner services.
Consider correlation as a primary key that is used by the BPEL runtime to correlate
incoming and outgoing messages, and route them accordingly.

Also see Chapter 9 for information on Handling Events where correlation is depicted.

BPEL Designer

[86]

Receive
The Receive activity allows the business process to perform a blocking wait for a
particular message to arrive. Typically the receive activity is the start of a process
instance. It is typically used to receive a message from the client or a callback from a
partner web service. Whenever the process receives a message, a new instance of the
process is created. To keep track of the right process, you need to set the correlation.

You can add any number of receive activities but they should receive messages from
different Partner Links. Also, if you do not create an instance from the Property
Editor window, make sure that you have the Correlations set on Receive activity.
This is because the Receive element must have a valid <correlations> child if it
does not have the createInstance="yes" attribute.

Chapter 5

[87]

In the example shown above, we have selected the BPEL Partner Link that
corresponds to a WSDL file. Operations created in the WSDL file are automatically
populated. You can select any Operation from which the message will be received to
the process.

Reply
The Reply activity is used to return a message from the process to the same partner
that initiated the operation. This activity is used in a synchronous operation, and
specifies the same partner, port type, and operation as the Receive activity that
invoked the process. For example, a web service invoking the Reservation BPEL
process gets a reply back from the NorthAir Reservation web service regarding the
itinerary status.

The above figure shows a HelloBP BPEL process sending a reply back to the invoked
web service. There could be multiple replies from your process depending on the
conditions. Each reply activity should be in a sequence. However, you can add
reply activities on multiple partner links defined for the process. Thus the process
can reply to multiple invoke activities from different partner links.

In a receive-reply pair, only one outstanding reply activity can correspond to
an executed receive. This means that, at most, one reply is executed for a given
receive. At runtime, only one reply activity is executed, because the reply
activities will most likely be in exclusive branches of execution.

BPEL Designer

[88]

The combination of Receive and Reply activities creates a
Request-Response operation. This activity is used in a synchronous
(request/response) operation, and specifies the same partner, port type,
and operation as the Receive activity that invoked the process.

A valid BPEL process can have only one receive activity and one reply activity.

Partner Link
Any web service that communicates with the BPEL process is identified as a Partner
Link. Each partner link will contain child elements that correspond to the available
web service activities supported by that partner link's interface. You do not directly
add elements to a partner link container. The Design view will query the partner's
WSDL and automatically populate the partner link container with the appropriate
child elements. If you need to modify a partner link, edit the partner WSDL files
which will allow the Design view to re-render the partner link, and thereby reflect
the modified interface.

Chapter 5

[89]

In the above example, we have one partner link. SayHello_PL is the BPEL
implementation that invokes the BPEL process. To add a partner link just
drag-and-drop any external element, like a web service or a WSDL file, on the
highlighted area of the BPEL diagram. When you drag-and-drop an external
element, a partner link dialog box is shown where you can configure the partner
link by selecting the correct WSDL file.

Partner Link elements identify the parties that interact with our business process.
Each link is defined by a partner link type and a role name. The Partner Link Type
determines the relationship between a process and its partners by defining the roles
played by each service in a conversation. The relationship is further determined by
specifying the port type provided by each service to receive messages. Each role
specifies one port type in the WSDL file. You use a single role for a synchronous
operation, as the results are returned using the same operation.

When you drag-and-drop a web service into the diagram, the BPEL
Designer retrieves the WSDL file from the Application Server. To
successfully retrieve the WSDL file, the Application Server should be
running and the web service project must be deployed.

BPEL Designer

[90]

In the Partner Link editor window, you can choose whether to use the existing
partner link type or create a new partner link type. If the WSDL file you selected
contains partner link types, the Use Existing Partner Link Type option is selected
automatically and the Partner Link Type drop-down list is populated with the
partner link types found in the WSDL file. You can use one of the existing partner
link types or select the Use a Newly Created Partner Link Type option to create a
new partner link type. If the WSDL file does not contain partner link types, the Use a
Newly Created Partner Link Type option is selected. When in doubt, always accept
the default options provided by NetBeans property editors.

Other BPEL Activities
BPEL activities are broadly classified into Basic Activities and Structured Activities
that you frequently use in your project. They are defined in the following table:

BPEL Activity What For?
<assign> To copy or manipulate data flowing through the process.
<throw> To indicate a fault or specific event handling in the process. Refer to

Chapter 9 on Event Handlers.
<wait> To hold the process execution for a specific period of time.

There may be cases where you may need to introduce an intentional
delay for a specific duration, or delay execution until a specified time. For
instance, you may need to pause to instruct the business process to invoke
a web service at a specified time. Or there may be cases where you may
need to wait for some time before you can resume execution.

<sequence> To define a set of activities that will be invoked in a sequence.
<flow> To define a set of activities that will be invoked simultaneously.
<pick> To select a path of execution.

Read the Developer Guide to BPEL Designer available at
http://www.netbeans.org/kb/60/soa/bpel-guide.html for
more information on using the palette elements in your BPEL process.
The guide offers detailed help on using the BPEL palette elements. So the
BPEL palette elements are not explained in this book.

Navigator Window
The BPEL Navigator window lets you quickly navigate through your BPEL
process. When the BPEL process gets complicated and becomes huge, you can
quickly navigate through the elements using the BPEL Logical View offered by
the Navigator. To enable the BPEL Navigator, press Ctrl+7 or select Window |
Navigating | Navigator.

Chapter 5

[91]

When you right-click on any node, you can see two options:

1. Go to Source – Takes you to the occurence of that element in the
Source View

2. Go to Design – Takes you to the occurence of the element in the Design view.

A Simple Example
In the previous sections of this chapter, you were introduced to BPEL activities and the
different views offered by NetBeans for BPEL editing. Let us use that knowledge to
create a simple synchronous BPEL process that gets a name from a web service client
and replies with a 'Hello' message. This example has one receive and reply activity.

To create a BPEL process, you need to first create a BPEL Module project in
NetBeans. Click File | New Project | BPEL Module from the SOA category. Click
Next to continue.

BPEL Designer

[92]

Enter HelloBPEL as the Project Name. Select your Project Location and click Finish.

You will see a top node with HelloBPEL and an empty Process sub folder. Right-click
on HelloBPEL node and select New | BPEL Process to create a new BPEL process.

Chapter 5

[93]

Enter HelloBP as the name of the BPEL process. Leave the Target Namespace to be
the default namespace and click Finish.

When you finish creating the BPEL process, a file by the name of HelloBP.bpel is
created and the Design view is automatically shown. The BPEL process is empty
and does not have any BPEL activity. We know that any BPEL process should have
at least one receive activity to receive requests from external clients. So the BPEL
process is incomplete and is highlighted in red colour.

BPEL Designer

[94]

Now, we will create a web service that invokes our business process. To create a web
service, we need to create a WSDL Document. Right-click on the Process Files and
select New | WSDL Document to create a new WSDL document.

Enter SayHello as the File Name and leave the other fields as default.

Chapter 5

[95]

You will be shown the Abstract Configuration window. Leave the Port Type Name,
Operation name, and Operation Type as default. The Operation Type is
Request-Response Operation as our web service sends a string to the BPEL process
and receives a string back from the process.

Our Input and Output variables are both strings. So leave the Element or Type
value of both Input and Output at xsd:string.

If you are using an older version of NetBeans IDE, partnerLinkType will be
automatically generated. In the newer versions, you have the option to disallow
NetBeans from generating partnerLinkType.

BPEL Designer

[96]

In the Concrete Configuration page, set the Binding Type to SOAP. A Later part
of this book shows how you can use other WSDL binding types. Leave the default
values for the other fields and click Finish.

Now, notice that the SayHello.wsdl file shows up in the Process Files sub-folder.
You can double-click the file to edit the file. You can edit the WSDL file manually or
use the graphical view to edit. For more information on editing WSDL files, refer to
Chapter 6 on WSDL Editor.

Look at the generated WSDL file that has a port configured with SOAP binding.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="SayHello" targetNamespace=
 "http://j2ee.netbeans.org/wsdl/SayHello"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://j2ee.netbeans.org/wsdl/SayHello"
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
 <types/>
 <message name="SayHelloOperationRequest">
 <part name="part1" type="xsd:string"/>

Chapter 5

[97]

 </message>
 <message name="SayHelloOperationResponse">
 <part name="part1" type="xsd:string"/>
 </message>
 <portType name="SayHelloPortType">
 <operation name="SayHelloOperation">
 <input name="input1" message=
 "tns:SayHelloOperationRequest"/>
 <output name="output1" message=
 "tns:SayHelloOperationResponse"/>
 </operation>
 </portType>
 <binding name="SayHelloBinding" type="tns:SayHelloPortType">
 <soap:binding style="rpc" transport=
 "http://schemas.xmlsoap.org/soap/http"/>
 <operation name="SayHelloOperation">
 <soap:operation/>
 <input name="input1">
 <soap:body use="literal"
 namespace="http://j2ee.netbeans.org/wsdl/SayHello"/>
 </input>
 <output name="output1">
 <soap:body use="literal"
 namespace="http://j2ee.netbeans.org/wsdl/SayHello"/>
 </output>
 </operation>
 </binding>
 <service name="SayHelloService">
 <port name="SayHelloPort" binding="tns:SayHelloBinding">
 <soap:address location=
 "http://localhost:18181/SayHelloService/SayHelloPort"/>
 </port>
 </service>
 <plnk:partnerLinkType name="SayHello">
 <plnk:role name="SayHelloPortTypeRole" portType=
 "tns:SayHelloPortType"/>
 </plnk:partnerLinkType>
</definitions>

BPEL Designer

[98]

Now, drag SayHello.wsdl to the highlighted circle on the BPEL diagram to create a
new partner link.

When you drag-and-drop any external component into the Design view of the BPEL
file, you will be prompted to create a new Partner Link. When the Create New
Partner Link dialog box appears, enter SayHello_PL as the partner link name and
click OK.

Chapter 5

[99]

The Design view of the BPEL process shows the newly created partner link with one
operation SayHelloOperation.

Our BPEL process needs at least one receive activity. From the BPEL Palette,
drag-and-drop a Receive activity into the highlighted area in the diagram.

BPEL Designer

[100]

Now, double-click on the Receive activity to open the Property Editor.
Type ReceiveName as the name of the Receive activity. Select the Partner Link
SayHello_PL and select the only Operation available: SayHelloOperation. Now,
click the Create button, accept the defaults, and click OK. Now, you can see an Input
Variable by the name of SayHelloOperationIn configured. Click OK.

Now, our BPEL diagram shows our BPEL processing by receiving a request through
the SayHello_PL Partner Link. You can switch to the Source view and take a look
at the generated BPEL code. If you already know BPEL, you can directly edit the
code. However, it is advisable to perform all operations through the Design view
because whatever is valid in Source view may not be supported in Design view. The
NetBeans SOA tools are still evolving at the time of writing this book.

Chapter 5

[101]

Now that you have configured a Receive activity, your BPEL should return
some result back to the caller. For that, our process should have a Reply activity.
Drag-and-drop the Reply activity from the Palette into the highlighted area after
the Receive activity.

Once you have added the Reply activity, double-click on the activity and configure
its properties. Enter ReplyFromHelloBP as the Name. Select SayHello_PL for the
Partner Link and select the operation from the drop down box (If there is only one
operation, it will be automatically selected.). Click the Create button, accept the
default name for the variable, and click OK.

BPEL Designer

[102]

After adding a Reply activity, take a look at our BPEL process. It doesn't do anything
yet, but at least looks semantically complete. You can't try to execute this business
process yet, as the variables in the BPEL are not initialized.

The objective of this BPEL process is to get a name from an external client and greet
the client. The name obtained from the client is the input variable of the Receive
activity. This variable should be copied to the output variable of the Reply activity
with a string literal 'Hello' concatenated to it.

For this reason, let us add an Assign activity for performing this copy operation.
Drag-and-drop an Assign activity between Receive and Reply activity on the
highlighted area.

Chapter 5

[103]

Now, click on the Assign activity and switch to Mapper view. From the String
menu, select Concat and add it to the middle pane of the BPEL Mapper. From the
same String menu, select String Literal and add it to the middle pane. Now, expand
Variables in the left pane, navigate to SayHelloOperationIn, and click on part1
variable. Drag-and-drop this part1 variable into the String Literal. Add Hello as
the String literal. Now connect the other end of the String literal to the first String
entry in Concat box. Connect the last String entry of the Concat box to the variable,
SayHelloOperationOut | Part1 as shown in the following screenshot:

BPEL Designer

[104]

If you find the GUI complex to use, switch to Source view and edit your Assign1
activity to look something like the following code:

<assign name="Assign1">
 <copy>
 <from>concat('Hello ', $SayHelloOperationIn.part1)</from>
 <to variable="SayHelloOperationOut" part="part1"/>
 </copy>
</assign>

After making changes in the Source view, click on Design view to see if you can see
the graphical representation.

Now, our BPEL process is complete. Whenever the SOAP client sends a text message,
for example 'BPEL', the process returns 'Hello BPEL' to the client. For deploying
our BPEL process, we need a Composite Application. Our BPEL process should be
deployed as a JBI module, in a Composite Application to be processed by the BPEL
Service Engine.

So, create a new Composite Application by clicking File | New Project and
selecting Composite Application from the SOA category.

Enter HelloBPELCA as the name of our Composite Application. Provide a valid
path for the Project Location field and click Finish.

Chapter 5

[105]

Now, right-click on HelloBPELCA node and select Add JBI Module, to add a new
JBI Module.

BPEL Designer

[106]

In the Select Project window, select the HelloBPEL NetBeans project file you created
earlier. Note that the Service Engine deployment jar is selected automatically from
the project. Click Add Project Jar Files to continue.

Now, if you notice the folder structure of the composite application, HelloBPEL.jar
is copied to the JBI Modules folder so that it can be deployed to a BPEL
Service Engine.

Chapter 5

[107]

Right-click on the composite application and select Clean and Build, to build the
composite application as shown in the following screenshot:

After building the composite application, right-click on the composite application
and select Deploy to deploy the project.

Now, we need to test if our BPEL is working fine. To test the BPEL process, we create
a new test case. The test involves sending a SOAP request to the BPEL process and
getting the correct SOAP response back from the process.

BPEL Designer

[108]

The composite application we created will have an empty Test folder. Right-click on
the Test folder and select New Test Case.

Enter TestHello as the name of our test case and click Next to continue.

Chapter 5

[109]

You need to select the web service to which the SOAP request has to be sent. Select
SayHello.wsdl under HelloBPEL – Source Packages.

Our WSDL has only one operation by the name of SayHelloOperation. Select that
operation and click Finish.

BPEL Designer

[110]

Once the test case is created, double-click on the Input node to edit Input.xml. Make
changes to the Input.xml as shown in the following code:

<soapenv:Envelope xsi:schemaLocation=
 "http://schemas.xmlsoap.org/soap/envelope/
 http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:say="http://j2ee.netbeans.org/wsdl/SayHello">
 <soapenv:Body>
 <say:SayHelloOperation>
 <part1>BPEL</part1>
 </say:SayHelloOperation>
 </soapenv:Body>
</soapenv:Envelope>

Now, right-click on TestHello test case and select Run to run the test case. On the
first try, the test will fail and the Output.xml file will be created. You need to click
Yes when you are prompted with a dialog box showing 'Overwrite Empty Output?'
message Run the test case for the second time. The test case will pass. Double-click
on Output node to open Output.xml. Here is how the output should look:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
 "http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Chapter 5

[111]

 xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/
 http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <m:SayHelloOperationResponse xmlns:m=
 "http://j2ee.netbeans.org/wsdl/SayHello">
 <part1 xmlns:msgns="http://j2ee.netbeans.org/wsdl/
 SayHello" xmlns="">Hello BPEL</part1>
 </m:SayHelloOperationResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This is just a simple business process illustrating how BPEL processes should be
built and executed through NetBeans SOA tools and runtime. For a more complex
example, refer to Chapter 10 – Building a Sample Application.

BPEL 2.0 Elements
Some of the common errors that might occur while validating your BPEL
file—endpoint conflict, unsupported BPEL elements, and other BPEL Service Engine
issues. For troubleshooting validation errors in your BPEL document, refer to
https://open-esb.dev.java.net/kb/60/ep-bpel-guide-troubleshoot.html.

The BPEL Designer that gets bundled with NetBeans supports the BPEL
2.0 final specification and does not support any previous specifications.
This means that, when you open the BPEL files that comply with the
previous versions of the specification, the BPEL Designer shows the
Unable to Show the Diagram message.

The following BPEL 2.0 elements and attributes are not present in the 5.5 release of
the BPEL Designer.

Element Parent Element
Validate, Rethrow, Compensate, ExtensionActivity, FromPart,
CompensationHandler NA

CompensationHandler, Catch, CatchAll Invoke
From Variable
Targets, Sources Activity

FromPart Receive, Invoke,
OnEvent, OnAlarm

ToPart Reply, Invoke
ExtensibleAssign Assign
Documentation, Namespace From, To in Assign

BPEL Designer

[112]

Element Parent Element
Links Flow
PartnerLinks, CorrelationSets, CompensationHandler,
TerminationHandler Scope

MessageExchange Scope, Process
Attribute Element
QueryLanguage, ExpressionLanguage, SuppressJoinFailure,
AbstractProcess, ExitOnStandardFault Process

InitializePartnerRole PartnerLink
SuppressJoinFailure Activity
Validate Assign
ExpressionLanguage, Property, PartnerLink, EndPointReference,
Opaque From

QueryLanguage, Property, PartnerLink To
Isolated, ExitOnStandardFault Scope
Parallel ForEach

MessageExchange Receive, Reply,
OnMessage, OnEvent

It is possible that some of the above BPEL elements are supported in the newer
release at the time of publishing this book. For the latest list of supported BPEL
constructs, always refer to the BPEL Service Engine User Guide available at
https://open-esb.dev.java.net/kb/60/ep-bpel-se.html.

BPEL Products and Vendors
The BPEL product vendors can be classified into two types. The one that offers the
BPEL Engine or the BPEL Server, and the other that offers the designer capabilities
for authoring BPEL-based processes. The following is a list of BPEL server and
designer vendors:

Oracle BPEL Process Manager (http://www.oracle.com/technology/
products/ias/bpel/index.html)
IBM WebSphere Business Integration Server Foundation
(http://www.ibm.com/software/integration/wbisf)
IBM alphaWorks BPWS4J
(http://www.alphaworks.ibm.com/tech/bpws4j)
OpenStorm Service Orchestrator (http://www.openstorm.com)
Vergil VCAB Server (http://www.vergiltech.com/products_VCAB.php)

•

•

•

•

•

Chapter 5

[113]

Active Endpoints ActiveWebflow Server
(http://www.active-endpoints.com/products/index.html)
ActiveBPEL engine (http://www.activebpel.org/)
Fivesight Process eXecution Engine
Microsoft BizTalk 2004 (http://www.microsoft.com/biztalk/)
Oracle BPEL Designer
IBM WebSphere Studio Application Developer, Integration Edition
IBM BPWS4J Editor
Vergil VCAB Composer
Active Endpoints ActiveWebflow Designer

Summary
SOA will simplify the building, managing, and maintaining of distributed systems
because the technologies you use to build these systems are often standard-based
like BPEL. BPEL is one of the technologies that provides a rich web service-based
infrastructure and an orchestration language that has widespread industry support.
BPEL's promise is that the creation of abstract and executable schemes can be defined
as a business process and run in any compliant engine.

NetBeans' BPEL Designer allows you to create simple to complex BPEL-based
processes that can run on application servers like GlassFish Application Server.

In this chapter, we learned the usage of NetBeans' BPEL Designer and how it can be
used to create simple processes visually. You were also introduced to the graphical
tools and palette available for creating BPEL files and composite applications.

•

•

•

•

•

•

•

•

•

WSDL Editor
In Chapter 5, we discussed the need for BPEL and BPEL Designer within NetBeans
Enterprise Pack. In this chapter, we will give a brief overview of what WSDL is,
and how WSDL documents are formed. This chapter is not intended as a complete
introduction to WSDL but as an overview of what WSDL is. We will continue and
concentrate on the use of WSDL in enterprise applications and in particular, discuss
the WSDL editor within NetBeans Enterprise Pack. Finally, we will show how
NetBeans Enterprise Pack assists in the development of web services based upon
WSDL documents.

The following topics will be discussed in this chapter:

What is WSDL?
Why WSDL?
How are WSDL documents formed?
Managing WSDL documents in NetBeans
Different Views of WSDL documents
Abstract and Concrete WSDL configurations
Creating Web Services from WSDL documents

At the end of this chapter, you will have a better understanding of WSDL and what
support the NetBeans Enterprise Pack provides for developers using WSDL.

What is WSDL?
In Chapter 3, we discussed the need for standards when developing and integrating
enterprise applications. The Web Services Definition Language (WSDL) provides a
standard for describing services, the location of services, and what operations these
services provide, all in a platform and language independent way. This allows the
enterprise application developer to build and consume loosely coupled services,
which is one of the key tenets of building successful SOA applications.

•
•
•
•
•
•
•

WSDL Editor

[116]

WSDL documents provide both an abstract and a concrete view of the services
they are describing. The abstract view describes the operations of the services
whereas the concrete view describes how those operations are mapped onto a
specific protocol, for example SOAP. We will discuss these abstract and concrete
views later in this chapter.

WSDL documents are correctly formed XML documents, which again aids in
developing enterprise applications in a Service Oriented Architecture. Correctly
formed XML documents can be read and parsed automatically by computers, which
allows clients to look up and consume web services automatically (for example, by
using a uddi registry) or allows the Normalized Message Router (see Chapter 3) to
pass standardized messages between the different JBI components (for example,
Service Engines and Binding Components).

WSDL was first proposed in March 2001 as a note to the W3C (http://www.w3.org/
wsdl) by Ariba, IBM, and Microsoft. In their W3C note, they describe WSDL as:

…an XML format for describing network services as a set of endpoints operating
on messages containing either document-oriented or procedure-oriented
information. The operations and messages are described abstractly, and then bound
to a concrete network protocol and message format to define an endpoint. Related
concrete endpoints are combined into abstract endpoints (services). WSDL is
extensible to allow description of endpoints and their messages regardless of what
message formats or network protocols are used to communicate.

Why WSDL?
The key benefits of using WSDL are:

WSDL is XML-based: being XML-based means any system that can read and
interpret XML, can read and interpret WSDL documents.
WSDL is platform and language independent: WSDL is not tied into one
programming language and platform. WSDL-based web services could be
developed and deployed in Microsoft's .NET environment and consumed
via Java GUI applications. Alternately, WSDL-based web services could
be developed and deployed in a Java environment and consumed via
PHP-based web applications.
WSDL describes services in an abstract fashion: services are described
in an abstract fashion as they help to promote loose coupling and aid in
developing against interfaces, promoting good design.

•

•

•

Chapter 6

[117]

WSDL binds services to concrete protocols: the specific binding for a service
is separated from the description of the service because loose coupling
between services and their transports is enabled.
WSDL is extensible: WSDL does not tie communications to one specific
protocol, for example SOAP over HTTP. As new transport mechanisms are
required, additional bindings can be specified. Today, we may only need
to access our WSDL described services via SOAP, but in the future we may
need JMS or SMTP bindings. WSDL format allows us to extend WSDL
documents to add additional bindings as and when necessary.

The Format of WSDL Documents
Now that we've described what WSDL is and the benefits that it gives, lets take a
look at what WSDL documents look like.

In the previous section, we stated that WSDL documents are correctly formed XML
documents. The basic structure of a WSDL document is shown as follows:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="myService" targetNamespace=
 "http://j2ee.netbeans.org/wsdl/myService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://j2ee.netbeans.org/wsdl/myService"
 xmlns:ns="http://xml.netbeans.org/schema/myService"
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype">

 <types>

 </types>

 <message name="myMessageRequest">

 </message>

 <message name="myMessageReply">

 </message>

 <portType name="myPortType">

 <wsdl:operation name="myOperation">

 <wsdl:input name="input1" message="tns:myMessageRequest"/>

 <wsdl:output name="output1" message="tns:myMessageReply"/>

 </wsdl:operation>

 </portType>

•

•

WSDL Editor

[118]

 <binding name="myBinding" type="tns:myPortType">

 </binding>

 <service name="myService">

 <wsdl:port name="myPort" binding="tns:myBinding">

 </wsdl:port>

 </service>

</definitions>

The WSDL file is broken down into 5 main elements all below the main
<definitions> element:

<types/> abstract Describes the data types used by the operations; described for
the service. These data types are defined using XML Schema
Definitions. We will learn more about the XML Schema
Designer in NetBeans in Chapter 7.

<message/> abstract Describes the messages that are used within the service.
<portType/> abstract Describes the operations that are available within the service.
<binding/> concrete Describes what binding the service is using (e.g. SOAP, JMS)
<service/> concrete Describes connection details for the specific bindings.

WSDL Types
The <types/> element of WSDL document allows the different data types used by
operations in the service to be defined using XML schema language. In the following
code, types are imported from XSD file hello.xsd located in the same directory as
the WSDL file.

<types>
 <xsd:schema targetNamespace="http://j2ee.netbeans.org/wsdl/hello">
 <xsd:import namespace="http://xml.netbeans.org/schema/hello"
 schemaLocation="hello.xsd"/>
 </xsd:schema>
</types>

WSDL Messages
Within the <message/> section of WSDL document, we define different messages
that can be used from the operations within the service. Each message defined
describes the names and types of its parameters. In the following example, we have
defined two messages (sayHelloRequest and sayHelloReply) for a simple Hello
World type service.

Chapter 6

[119]

<message name="sayHelloRequest">
 <part name="request" element="ns:stringElement"/>
</message>
<message name="sayHelloReply">
 <part name="response" element="ns:stringElement"/>
</message>

WSDL Port Types
The <portType/> element within WSDL document describes the operations that are
available from the service. For each operation described by WSDL, we describe the
name of the operation, and the names and types of the parameters (message) used
by the operation. A sample code for the <portType/> element looks like, shown
as follows:

<portType name="helloPortType">
 <wsdl:operation name="sayHello">
 <wsdl:input name="input1" message="tns:sayHelloRequest"/>
 <wsdl:output name="output1" message="tns:sayHelloReply"/>
 </wsdl:operation>
</portType>

WSDL allows four different types of operations to be defined as follows:

One-Way: the service endpoint receives a message and processes it without
returning a response to the client.
Request / Response: The service endpoint receives a message, processes it
and then returns a response to the client.
Notification: The endpoint sends a message to a client without first receiving
a message from the client.
Solicit / Response: The endpoint sends a message to a client and then
receives a response back from the client.

These different operation types are defined within WSDL by specifying which
different message types are used by a specific operation.

Notification or Solicit/Response type messages have to be added
manually within WSDL editor.

•

•

•

•

WSDL Editor

[120]

One-Way <portType ...>
 <wsdl:operation ...>
 <wsdl:input name="input1" ... />
 </wsdl:operation>
 </portType>

Request / Response <portType ...>
 <wsdl:operation ...>
 <wsdl:input name="input1" ... />
 <wsdl:output name="output1" ... />
 </wsdl:operation>
 </portType>

Notification <portType ...>
 <wsdl:operation ...>
 <wsdl:output name="output1" ... />
 </wsdl:operation>
 </portType>

Solicit / Response <portType ...>
 <wsdl:operation ...>
 <wsdl:output name="output1" ... />
 <wsdl:input name="input1" ... />
 </wsdl:operation>
 </portType>

WSDL Binding
The <binding/> elements of the WSDL document describe concrete protocols for
the operations (portType's) described by WSDL. In the following code sample, the
operation from the tns:helloPortType is bound to a soap transport using a
document encoding style.

<binding name="helloBinding" type="tns:helloPortType">
 <soap:binding style="document" transport=
 "http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="sayHello">
 <soap:operation/>
 <wsdl:input name="input1">
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="output1">
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
</binding>

Chapter 6

[121]

WSDL Service
The <service/> section of the WSDL document describes concrete endpoint ports
for the binding, specified in the <binding/> section. In the following code, we
can see that the binding is for a SOAP-based service with a URL endpoint
(http://localhost:18181/helloService/helloPort).

<service name="helloService">
 <wsdl:port name="helloPort" binding="tns:helloBinding">
 <soap:address
 location="http://localhost:18181/helloService/helloPort"/>
 </wsdl:port>
</service>

Now that we've had a brief of into WSDL, lets take a look at what support NetBeans
provide for creating and editing WSDL documents.

NetBeans Support for Creating WSDL
Documents
Within the NetBeans IDE, new WSDL documents can be created by selecting the
File | New File menu option. Under the XML category in the New File dialog we
can select to create a new WSDL Document shown as follows:

WSDL Editor

[122]

Upon starting the New File wizard and selecting a new WSDL Document, NetBeans
displays a wizard allowing the configuration of the New WSDL Document to be
specified. After selecting a New WSDL Document, the second step is to specify the
Name and Location of the new WSDL document. This dialog allows us to specify
the File Name and location of the new file together with the Target Namespace for
the file. The namespace defaults to http://j2ee.netbeans.org/wsdl/fileName,
where File Name is the name of the file being created, but this can be overridden
with any application specific values.

This stage in the wizard also provides facilities to import an XML schema file into
the WSDL document. Importing XML schema files into the WSDL document saves
having to re-specify any custom data types in your WSDL file that may be in use
elsewhere within your application. The WSDL creation wizard only allows one XML
schema file to be imported, however additional XML schema files can be imported
once the WSDL file is created—we'll see how to do that in the next section.

Chapter 6

[123]

The following screenshot shows the NetBeans dialog that allows XML schema files to
be imported into the WSDL document. This dialog allows files to be imported based
upon either the File Name or the Namespace of the file. To use this feature therefore,
the XML schema file must already be a part of the current NetBeans project—it is not
possible to import XML schema files that are hosted on remote servers, without first
adding them to the current NetBeans project.

After specifying the file and namespace details for the new WSDL document, the
wizard continues to the Abstract Configuration page for the WSDL file. You will
remember that we discussed the abstract configuration previously—this contains
details of the methods, parameters, and faults that are described in the WSDL
document. This page in the dialog allows us to specify one operation only within the
WSDL file—further operations can be specified once the file has been created.

After specifying the Port Type Name and the Operation Name, the Operation
Type must be specified. This field allows only One-Way Operation and
Request-Response Operation to be specified. If we wish to create either a
Notification or Solicit/Response type message, then the ordering of the messages
needs to be manually edited within the WSDL document.

WSDL Editor

[124]

Within this page in the wizard, we can specify the names of message part names by
editing the appropriate Message Part Name. To select a type for the message part,
press the "..." button under the Element or Type column. This displays the following
dialog, within which all the built-in schema types (xsd:string, xsd:boolean) and the
custom types that are available (in the current NetBeans project) are displayed.

The final page of the new WSDL document wizard displays the Concrete
Configuration page for the WSDL document. This page allows a Binding Name and
Binding Type to be specified. The NetBeans enterprise pack installs support for the
following binding types:

File
FTP
HTTP
JDBC
JMS
SMTP
SOAP

•

•

•

•

•

•

•

Chapter 6

[125]

Depending upon the binding type selected, different options are displayed allowing
binding type specific details to be configured. For example, selecting the SOAP
binding type allows us to specify whether we want to use RPC Literal, Document
Literal or RPC Encoding for the SOAP message.

NetBeans Support for Editing WSDL
Documents
The NetBeans editor provides raw XML, graphical and partner views of WSDL
documents. These are chosen by selecting either Source, WSDL or Partner buttons at
the top of the WSDL window.

WSDL Editor

[126]

The Source window displays the raw XML for the WSDL document. Similar to other
code windows within the NetBeans editor, this code window is color coded and
supports code folds for XML elements within the file.

Any changes made to the WSDL file in the Source view is also displayed in the
WSDL and Partner view. If the XML is not well formed however, NetBeans cannot
display the WSDL or Partner views and will display a message indicating this (The
WSDL is not well-formed. message box). To help ensure that your WSDL remains valid
whilst editing the XML, two buttons are provided on the editor toolbar to check the
XML and to validate the XML.

Checks the XML to be valid (Shortcut key: Alt+F9)

Validates the XML against its XML Schema (Shortcut key: Shift+Alt+F9)

The first of these buttons checks whether the WSDL document is a valid XML
document. This performs basic XML checks such as ensuring that each start tag has
a corresponding end tag or that elements do not have multiple attributes with the
same name.

The second of these checks, validates the WSDL document against the WSDL XML
schema, and reports errors such as invalid tags or attributes.

If you are familiar with WSDL, then the Source editor provides a powerful way of
manually editing WSDL documents. If you prefer editing WSDL files graphically,
then the WSDL view provides both a hierarchical tree view and a column based
view of the WSDL file.

Hierarchical Tree Based View

Column Based View

Chapter 6

[127]

Clicking on any of the top level elements in the WSDL file (Types, Import, Messages,
Port Types, Bindings, Services, Extensibility Elements) displays a popup-menu
from which new entities can be added into the WSDL document. For example, to add
a new port type into the WSDL document is simply a matter of right-clicking on Port
Types in either the tree or column views and selecting the Add Port Type... menu
option. This then displays a dialog similar to the Abstract Configuration page within
the New WSDL Document wizard allowing all of the details of the new port type to
be specified.

WSDL Editor

[128]

The final view in the WSDL editor is the Partner view. This view allows messages
and the interactions between different partners to be graphically modeled. From
within this view, we can add new operations by right-clicking on a port type within
a partner view and selecting the New operation... menu option. All operations are
displayed in the partner view window in a UML style showing the external partner,
the operations that are available and the port type supporting the operations.

New Port Types and Messages can be added to the WSDL document by selecting
the appropriate component from the palette and dragging it into the Partner view.

Chapter 6

[129]

Within the Partner View, the following menu buttons provide view
specific functionality:

Fit the partner view into the current window.

Fit the partner view horizontally into the window.

Display the partner view at 100%

Zoom into the partner view window

Zoom out from the partner view window

Toggle display of partner links

Toggle display of messages

Refactoring of WSDL Entities
To avoid any problems with accidentally deleting elements within a WSDL
document, both the WSDL and Partner views provide a safe delete option. This is
invoked by right-clicking on an element and choosing the Delete option, or by
right-clicking on an element and choosing the Refactor | Safe Delete menu option.

Performing a safe delete causes a list of all references to the item being deleted to be
shown within an IDE window. If there are no references to the specified element,
then it can be deleted, however if the element being deleted is referenced elsewhere
within the WSDL document, then the IDE will not allow it to be deleted.

WSDL Editor

[130]

In addition to a safe delete refactoring, the WSDL editor also provides a Rename
refactoring. This is invoked by right-clicking on elements within the WSDL or
Partner views and selecting the Refactor | Rename menu option.

When invoking the rename refactoring, the IDE gives a view showing all the
references where the element is used within a tree view as shown in the left pane of
the figure below. The two panes on the right of the window show the WSDL before
refactoring and what it will look like after the refactoring. When you are happy that
the refactoring is correct, you can select the Do Refactoring button to confirm.

Building a Simple Contract First Web
Service
Now that we have a good understanding of WSDL and the features that NetBeans
provides for editing WSDL files, let's create a simple contract first web service.
There is a lot of debate in the web services community at present as to whether
contract first web services are the best way to develop interoperable web services or
whether we should develop Java code first and let the WSDL be a by-product that is
automatically generated for us. For our sample application, we are going to develop
a simple Hello World web service. In this case, it's probably overkill to generate the
WSDL manually (with Java EE 5 we can generate this same web service with a few
annotations!), but nevertheless, the technique we are about to outline holds true for
any level of complexity from simple Hello World web services to complex airline
ticket booking web services. If you learn the techniques and concepts for a simple
web service, it's straightforward to extend that knowledge for complex web services.

Chapter 6

[131]

The first stage in creating our simple web service is to create a Java Web Project that
can act as the service endpoint. From within NetBeans, select the File | New Project
menu option and create a new Web Application by selecting the Next button.

WSDL Editor

[132]

Enter the name of the project as HelloWorldWS. Ensure that either the Sun Java
System Application Server or GlassFish V2 (depending upon your version of
NetBeans) is selected as the server and that Java EE version 5 is selected. At this
point, press the Finish button to create the project.

Now that we have a web project to host our web service endpoint, we need to define
the WSDL contract. For our simple HelloWorld web service, we are going to define
one port Type (method) called sayHello. This will be a request/response web service
with the request message being a single string and the response method also being
a single string. We're not going to worry about what the Java code looks like yet for
this service as we are defining the contract only first.

Within the Projects window, right-click on the Web Pages node for the
HelloWorldWS project and select the New | WSDL Document... menu option. If
that menu option is not available, select the New | Other menu option and on the
resulting dialog, select the XML category and the WSDL Document file type.

Chapter 6

[133]

On the first page of the New WSDL Document wizard, enter the name of the WSDL
file as helloWorldWSDL. Accept all the defaults for the other options. Select the
Next button to enter the Abstract Configuration. On this page, change the operation
name to sayHello and change the Message Part Name for the Input message to be
yourName and the Message Part Name for the Output message to be greeting. You
can see here that the message type is automatically set to request/response so we
don't need to change that.

WSDL Editor

[134]

Select the Next button to move to the Concrete Configuration page of the wizard.
On this page, we can see that the Binding Type defaults to SOAP so we do not need
to change that for our sample web service. Select the Finish button to create the
WSDL document.

Chapter 6

[135]

Now that we have created the contract for our web service (the WSDL document),
we can use the NetBeans tools to create a web service from the WSDL. Right
click on the HelloWorldWS project within the Projects window and select the
New | Web Service from WSDL... option. If that menu option is not displayed,
select the New | Other menu option, and then in the resulting dialog, select the
Web Services category and Web Service from WSDL file type.

On the New Web Service from WSDL wizard dialog, enter the web service name as
sayHello, the package as soabook.ch6 and browse the file system to select the WSDL
file we have just created. This WSDL file is created by default within the \Web folder
of the project.

WSDL Editor

[136]

Wait a few seconds while NetBeans parses the WSDL file until the Web Services Port
field is populated. At this point, select the Finish button to create the web service.

NetBeans will now analyze the WSDL document and create Java code to represent
the web service we have just defined. We now need to fill in the stub code that
NetBeans has generated with some business logic—our HelloWorld code. Open
up the Source Packages node in the project explorer and open the file soabook.ch6.
sayHello.java

Within that file, select the Source tab and locate the sayHello() method. Change the
method to:

 public java.lang.String sayHello(java.lang.String yourName) {
 return "Hello "+yourName;
 }

Chapter 6

[137]

Now that we have created our sample web project, lets take a look at the project
structure and see what files have been created.

NetBeans has created a standard NetBeans Web Project directory structure with the
standard build, nbproject, src, test and web directories. Each of these directories
contains the standard files that NetBeans creates for a web project. For our sample
web service project, we've not created any files in these directories. In the src/java
directory however we've created a package hierarchy soabook.ch6 and included a
Java file in this package called sayHello.java

Within the web/web-inf folder we can see the WSDL file we have
created—helloWorldWSDL.wsdl

Now we have done all the coding necessary for our sample contract first web
service—the next stage is to deploy the web service to the application server.
Right-click on the project in the Project pane and select the Undeploy and Deploy
option. NetBeans will now take a few seconds to deploy the web service to the
application server.

To test the web service, we can use the inbuilt NetBeans web service testing
tool. Expand the Web Services node within the project explorer, right-click on
helloWorldWSDLService and choose the Test Web Service Option.

WSDL Editor

[138]

Invoking the Test Web Service tool causes the system default browser to be
displayed running the web service test tool. This lists all the operations available to
the service and allows them all to be interactively tested. Enter your name into the
edit box and press the sayHello button to invoke the sayHello method.

Chapter 6

[139]

If everything goes as expected, you should now see a page similar to that shown
below showing the results of the web service operation and the input and output
SOAP messages passed to and received from the web service.

WSDL Editor

[140]

Summary
In this chapter, we have reviewed the basics of WSDL. We've learned that WSDL
documents are fully-formed XML files that provide a way of describing services.
They provide both an abstract and a concrete description of services with the
concrete description providing details of the bindings to different protocols (such as
SOAP or JMS).

We've looked at the editing support that the NetBeans IDE provides for WSDL
documents and seen that NetBeans provides three different views of WSDL
Documents. The Source view provides a raw XML editor which includes syntax
highlighting and tools for checking and validating the WSDL document. The
"WSDL" view provides 2 different graphical views (tree based and column based)
of the WSDL. Each of these graphical views provides easy to use tools allowing
additional components (types, imports, messages, port types, bindings and services)
to be added to the WSDL document. The Partner view shows the messages within a
WSDL document and the interactions between different partners and the messages.
Messages and their interactions can be created by dragging and dropping from the
palette into the Partner view.

Finally, we developed a simple contract first web service based upon a WSDL file.
We showed how NetBeans provides tools to easily allow web services to be built
from WSDL documents and then deployed and tested.

In the next chapter, we'll discuss the XML Schema editor within NetBeans and show
how this allows us to develop complex XML schemas using graphical tools.

XML Schema Designer
In Chapter 6, we discussed WSDL and the WSDL editor, provided as part of the
NetBeans Enterprise pack. As we saw in the previous chapter, a good knowledge of
WSDL and WSDL tools is required to develop and integrate enterprise applications.
We saw that WSDL documents are well formed XML documents that must follow
certain guidelines to be valid. The standard mechanism for validating XML files is to
use an XML schema document which describes the XML document and allows XML
documents to be validated for correctness. In this chapter, we will discuss the XML
Schema Designer provided as part of the NetBeans Enterprise Pack and show how
this can be used to aid in the development and testing of XML Schema documents.
We will start by providing an overview of XML schemas and discuss how they
provide a standardized method for validating XML files. We will then continue
our discussion by introducing the support that NetBeans provides for maintaining
XML Schema documents and XML Schema components. Finally, we will delve into
different design patterns that are supported by NetBeans for editing and refactoring
XML Schema documents.

The following topics will be discussed in this chapter:

What are XML Schemas?
Why use XML Schemas?
Different Views of XML Schema Documents in NetBeans
Maintaining XML Schema Documents within NetBeans
XML Components
XML Schema Components
XML Schema Design Patterns

By the end of this chapter, you should have a solid understanding of XML Schema
and the support provided by the NetBeans Enterprise Pack for developers using
XML Schema Language.

•

•

•

•

•

•

•

XML Schema Designer

[142]

What are XML Schemas?
Over recent years, XML has become a dominant technology for data interchange
between different systems. The advantages of XML over, say, flat files, is that the
data is extensible (additional attributes or elements can be added to data structures)
and self describing. Using this knowledge, we could describe an airport, for
example, in a simple piece of XML as:

<?xml version="1.0"?>
<airport>
 <name>London Heathrow</name>
</airport>

From this XML, we can easily see that we are describing a single airport called
London Heathrow. In the future, we may want to expand our simple description
of Heathrow Airport by adding the Airport's IATA code and the number of major
runways the airport has. In the previous paragraph we stated how XML is self
describing and extensible—the key features that allow us to easily describe these
new attributes in our XML sample.

<?xml version="1.0"?>
<airport>
 <name>London Heathrow</name>
 <iata>LHR</iata>
 <numberOfRunways>2</numberOfRunways>
</airport>

From the above XML samples, we can see how easy it is to extend XML and add new
elements, attributes or entire structures into an XML file. Describing data structures
in XML however, is only half of the problem. How do we know that the XML we
have received is the XML we are expecting? What if we described our airport XML
requirements as:

We need an airport element with fields for

name
IATA code
number of runways

Our XML sample above meets these requirements, but so does the sample below.
Which one is correct?

<?xml version="1.0"?>
<airport name="London Heathrow" id="LHR" numberOfRunways="two"/>

•

•

•

Chapter 7

[143]

Given the lack of any description of our XML requirements, both XML files are
completely valid, however there is no way that an application would be able to
parse both of these XML files and obtain the same results. XML Schema answers our
problems here by allowing us to describe how the XML should be defined. Using
XML Schema, there are no ambiguities as to whether:

name is an attribute
the IATA code is an element called iata or an attribute called "id"
the numberOfRunways is an element or attribute
numberOfRunways takes an integer or a string.

XML Schema allows us to define the elements and attributes that are present within
an XML file and allows the XML file to be machine validated for correctness. This
second part is important, because XML schema allows us to machine validate XML
files. This means that applications can check that data is valid before they attempt to
process the data.

XML Schema is a W3C Recommendation which was first recommended in May 2001
(http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/). The W3C describes
XML Schema (http://www.w3.org/TR/NOTE-xml-schema-req) as follows:

The XML schema language can be used to define, describe, and catalogue
XML vocabularies for classes of XML documents. Any application of XML
can use the Schema formalism to express syntactic, structural, and value
constraints applicable to its document instances.

Given this knowledge of XML schema, we could define a simple XML schema
(airport.xsd) and XML file (airport.xml) for our airport data structure as follows:

//airport.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xml.netbeans.org/schema/airport"
 xmlns:tns="http://xml.netbeans.org/schema/airport"
 elementFormDefault="qualified">
<xsd:element name="airport">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="iata" type="xsd:string"/>
 <xsd:element name="numberOfRunways" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>
</xsd:schema>

•
•
•
•

XML Schema Designer

[144]

//airport.xml
<?xml version="1.0" encoding="UTF-8"?>
<airport
 xmlns="http://xml.netbeans.org/schema/airport"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://xml.netbeans.org/schema/airport/airport.xsd">

 <name>London Heathrow</name>
 <iata>LHR</iata>
 <numberOfRunways>2</numberOfRunways>
</airport>

Looking at the XML Schema definition file (airport.xsd), we can see several
important features that allow the XML structure to be defined.

1 The .xsd file is a well formed XML document
2 The root element of any XML files conforming to this schema must be called "airport".

There is only one root element allowed.
3 The root element "airport" is a complex type. In XML Schema Definitions, types are

defined as either simple or complex. Simple types are types such as integers, strings,
dates. Complex types are data structures built up from simple types and other
complex types.

4 The complex type defines that the elements within it must appear in the order in
which they are specified within the XSD file. If the elements in the XSD file are not
specified in the same order, then the XML file will not validate correctly.

5 The first element in the "airport" type is the "name" which is a string.
6 The second element in the "airport" type is the "iata" code which is a string.
7 The third and final element in the "airport" type is the numberOfRunways which is

an integer.

This is just a brief overview of the features of XML Schema and the benefits which
it provides to applications that parse and use XML data. A complete reference of
XML Schema is outside the scope of this book (there's probably enough for a book
in itself), however having a solid knowledge of XML schema is very important
and we recommend spending some time familiarizing yourself with XML Schema
if necessary.

Now that we've seen what XML Schema is and why it's useful, let's have a look at the
support that the NetBeans Enterprise pack provides developers.

Chapter 7

[145]

NetBeans Support for XML Schema
Documents
NetBeans provides both graphical and textual editing of XML Schema Definition
files (*.xsd). These files can be opened using the standard File | Open mechanism,
or can be created by selecting File | New File and then choosing to create an XML
Schema Document from the XML category in the New File dialog shown as follows.
Depending upon the type of installation of NetBeans you have, this menu option
may not be available. If not, it can be easily installed from the Update Center. If XML
support is not available, select the Tools | Plugins menu option. On the resulting
dialog, select the Available Plugins tab and choose the XML and Schema plugin
under the Web & Java EE category.

Selecting the Next button on this dialog invokes the New XML Schema wizard
which allows new schema files to be defined. This wizard can also be invoked by
right-clicking within the Projects explorer. In this case, a context sensitive version of
this dialog shown above will be displayed showing only the categories and file types
that are appropriate for the selected project type.

XML Schema Designer

[146]

The wizard displays one page allowing the filename and directory to be specified for
the new XSD file as shown below. If you are creating a web project and wish others
to be able to access your XSD file so that they can perform their own XML validation,
you would put the XSD file within the web sources folder of your project.

Note, when creating new XSD files, it is not necessary to specify the .xsd
file extension as NetBeans will automatically add this to the end of your
file name. Specifying this will cause duplication of file extensions.

This page also allows the target namespace for the new XSD file to be specified. This
defaults to http://xml.netbeans.org/schema/fileName, so it is recommended to
change this to something more sensible for your application.

When you have created or opened an XSD file within NetBeans, you will see that
NetBeans provides 3 different views of the XSD file.

Source View
Schema View
Design View

•

•

•

Chapter 7

[147]

The Source view provides a raw XML syntax highlighting editor which provides
code completion tips, allowing complete control over the contents of the XSD file.
The Schema view provides column-based editing facilities for all the different
entities within the XSD file. Finally, the Design view provides a powerful GUI with
drag and drop facilities for creating and editing XSD files. When changes are made to
an XSD file in any of these views, they are automatically represented within the other
views, so for example, creating a new complex type within the Design View will
automatically update the XML displayed within the Source View.

Let's take each of these views in turn and discuss the features of each.

Source View
The Source view provides the standard XML editing facilities giving a syntax
highlighted editor.

XML Schema Designer

[148]

Schema View
The Schema view provides a column-based view of the XSD file currently being
edited. The principle behind the column-based view is to allow individual categories
to be drilled down into sub categories by clicking on an entry within a column.
Clicking on an entry in a column causes the column to the right to display either all
the objects of that type, or in that type. For example, selecting Elements in the first
column will cause the second column to be populated with all the top level elements
within the XSD file. Clicking on any of these elements would then cause the column
to the right of that to display all the entries within that element—complex types in
the case of our airport XSD file created earlier.

Within the first column all the different types of entities that can be created within
the XSD file are displayed:

Attributes
Attribute Groups
Complex Types
Elements
Groups
Referenced Schema
Simple Types

•

•

•

•

•

•

•

Chapter 7

[149]

To create a new entity within the XSD file, right-click on the parent object of the new
entity and select the Add menu option. This will cause a context sensitive menu
option to be displayed allowing new entities to be added to the XSD file depending
upon where is clicked. For example, right-clicking on Elements provides a menu
option that allows only additional elements to be created whereas right-clicking on
airport in the above example would cause a menu option to be displayed allowing
attributes, elements, sequences to be added to the entity.

Right-clicking on a top level
entity allows additional entities
of the same type to
be added.

Right-clicking on other entities
allows all relevant child entities
to be added, not just those of
the same type.

XML Schema Designer

[150]

The properties of the different entities within the XSD file can be viewed and
edited within the Properties window as shown below. In this example, we can see
the properties of the iata element are visible. The various XSD attributes such as
Nillable, Max occurs, Min occurs, can all be edited from within this properties
window. This properties window is context sensitive and only displays the
properties applicable to the entity that has been selected within the Schema view.

Design View
The XML Schema Design view provides a graphical designer, allowing complex
XSD files to be easily built. We can see an example of the Design view below.
Developers use Drag and Drop to place components from the palette into the XSD
file. The Design view shows the Elements and Complex Types that are used to build
up the XSD file. The Elements and Complex Types can be expanded and collapsed
allowing all the sub components to be viewed in a tree like fashion.

In a similar fashion to the Schema view, selecting an entity in the Design view
causes the entry to be selected and its properties to be displayed within the
Properties window.

Chapter 7

[151]

The Palette window is the source of all dragging and dropping to create entities
within the XSD file. The palette window, as shown below, allows both XML
Components and XML Schema Components to be created within an XSD file.

The following tables show the entities that can be created within an XSD file by
dragging and dropping either XML Components or XML Schema Components into
the Design view. An example of the type of XML that is created for each component
type is also provided.

XML Components Example
Attribute <xsd:attribute name="isInternational" type="xsd:string"/><xsd:

attribute name="isInternational" type="xsd:string"/>
Element <xsd:element name="airport">
All <xsd:all>

 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="iata" nillable="false"/>
 <xsd:element name="numberOfRunways" type="xsd:integer"/>
</xsd:all>

XML Schema Designer

[152]

XML Schema
Components

Example

All <xsd:all>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="iata" nillable="false"/>
 <xsd:element name="numberOfRunways" type="xsd:integer"/>
</xsd:all>

Choice <xsd:choice>
 <xsd:element name="iata" nillable="false"/>
 <xsd:element name="fullAirportName" type="xsd:string"/>
</xsd:choice>

Complex Type <xsd:complexType name="airportDesctiption">
 <xsd:sequence>
 <xsd:element name="iata" type="xsd:string"/>
 <xsd:element name="fullAirportName" type="xsd:string"/>
 <xsd:element name="numberOfRunways" type="xsd:integer"/>
 </xsd:sequence>
</xsd:complexType>

Sequence <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="iata" nillable="false"/>
 <xsd:element name="numberOfRunways" type="xsd:integer"/>
</xsd:sequence>

To create a new element within a XSD file you select the Element entry within the
palette and drag it into the Design view. You then drop it into the location where
you want the element to be placed.

Chapter 7

[153]

Upon dragging and dropping a new element into the Design View, the element
is placed at the appropriate point within the designer with the default name of
newElement. This can be changed in-place within the GUI editor or within the
Properties window. Double clicking on any element within the GUI window will
also cause the name to be editable in this fashion.

Creating attributes or XML Schema Components uses the same technique of selecting
the entity in the palette and dragging it into the Design view. If you inadvertently
attempt to drop a component into an invalid location, then NetBeans will display a
warning message and will not allow the item to be dropped.

Uses of Elements
Within the Design view is a useful tool to allow the uses of elements and complex
types within an XSD to be queried and displayed. The Find Usages tool is invoked
by right-clicking on a complex type or element within the design view and selecting
the Find Usages option. Invoking this option runs the tool and opens a new Output
panel showing the usages of the selected entity in the currently open projects
within NetBeans.

XML Schema Designer

[154]

The find usages window provides several tools to help navigate around the find
usages results and to change the views available.

Refresh the find usages window

Expand/collapse all the nodes in the find usages window

Show logical view

Show physical view

Show graphical view

Show previous occurrence

Show next occurrence

If you prefer graphical representations of data rather than the tree view type
representation shown above, then the Graphical view will be useful. This view
displays a usages cloud providing a pictorial representation of the entity usages.

XML Schema Design Patterns
In common with other software development, XSD files can be developed to conform
to certain design patterns. The NetBeans Enterprise pack provides a refactoring
option to allow XSD files to be converted between these different design patterns.
The Enterprise Pack supports 4 different design patterns: Russian Doll, Salami Slice,
Garden of Eden and Venetian Blind.

Chapter 7

[155]

Pattern Description Single/Multiple
Global Elements

Complex Types
Created?

Russian Doll The Russian Doll pattern ensures
that there is only one global
element within the XSD file and
all other elements are local to this
global element. Complex types
are created within elements and
are not reused elsewhere within
the XSD file.

Single No

Salami Slice All elements in the Salami Slice
pattern are global meaning that
there are no local definitions of
elements and elements cannot
be nested. Complex types are
created within elements and are
not reused elsewhere within the
XSD file.

Multiple No

Venetian Blind The Venetian Blind pattern
ensures that there is only one
global element within the XSD file
and all other elements are local
to this global element. Complex
types are created outside of
elements and can be reused
between elements.

Single Yes

Garden of Eden In the Garden of Eden pattern,
all elements and complex types
are created within the global
namespace and and can be
reused by any elements within
the XSD file.

Multiple Yes

XML Schema Designer

[156]

To apply a Design pattern to a selected XSD file, right-click on the XSD file in the
project explorer and select the Apply Design Pattern... menu option. Selecting this
option causes the Apply Design Pattern dialog shown as follows:

Within this dialog, you can select whether you wish to use a Single Global Element
or Multiple Global Elements within your XSD file. You can also choose whether
to create complex types and reuse them within the XSD file or to use local complex
types for each element. For each of these options, NetBeans displays a fragment of
XML code providing a preview of what the resulting XSD file will look like.

Chapter 7

[157]

Summary
In this chapter we have reviewed the basics of XML Schema Language—a powerful
way to describe XML files thus allowing machine-based validation, and therefore
allowing software to validate ...XML inputs before beginning to process XML data.

We've looked at the editing support the NetBeans IDE provides for XSD documents
and seen that, similar to the WSDL editor, NetBeans provides three different views
to help editing. The Source view provides a raw XML editor which includes syntax
highlighting and tools for checking and validating the XSD document. The Schema
view provides a column-based view providing drill down support for querying
parent and child relationships within XSD files. Finally, the Design view provides
a graphical user interface with drag and drop support for adding XML and XML
schema components into an XSD file. Any changes made in any of these views are
automatically updated in the other views.

We also looked at XSD design patterns and how these can be applied to existing
XSD files within the NetBeans editor. We discussed the Russian Doll, Salami Slice,
Venetian Blind and Garden of Eden design patterns and the differences between
them in terms of global elements and global complex types.

In the next chapter, we'll discuss Intelligent Event Handling and introduce the
real-time business event collection and processing capabilities of NetBeans
Enterprise Applications.

Intelligent Event Processor
We have seen enterprises struggling to identify a business process monitoring
solution for their corporate solutions. Chances are very strong that your enterprise
might go down, with the steady and rapid inflow of business data, when you do not
have a piece of software at the doorway collecting business events and aggregate
them to raise necessary notifications and triggers.

Most of the enterprise grade applications need to work with a continuous stream
of data by actively monitoring the stream and filtering them based on defined
business rules. They seldom work with a finite data store or database. This is because
corrective actions can be performed more elegantly at the stream level than at the
data store level. Hence, in the business process, the current state of data is of very less
importance compared to the asynchronous and continuous data that flow through.

A business event processing tool allows business users and system integrators to
put together the middleware solution, thus triggering more focused actions and
enhancing automation and efficiency. There are quite a few tools in the market
that do business event processing effectively. In this chapter, we will be discussing
the Intelligent Event Processor (IEP) Service Engine. The IEP supports editing,
deploying, and executing event processors that can work on multiple continuous
data streams.

In this chapter, we will discuss the following topics:

Need for Event Processing tools
Introduction to IEP Service Engine
Continuous Query Language (CQL)
The IEP editor and palette
Getting started
Some examples
Operators—input and output types

•

•

•

•

•

•

•

Intelligent Event Processor

[160]

Need for Event Processing Tools
Every year, several enterprises loose business due to the fact that they fail to act on
opportunities evident through monitoring and responding to critical business events.
In the current time, sensitive economy is the responsibility of the enterprises. They
must keenly monitor business data and events that go across their systems.

I have tested various business event processing tools available in the market
today. Very few of them break away from the traditional business data processing
algorithms, and provide intelligent and real time event processing which supports
notifications and triggers. These tools have the capability to continuously monitor
streams that propagate business data and also provide useful analytical inferences.

In our need to find an event processor, let us define the most common functionalities
expected out of an event processor:

1. Continuous monitoring
2. Filtering capabilities
3. Notifications and triggers
4. Web Services support
5. Partition support
6. Seamless integration

Group of enterprise systems behaves more like a 'nervous system' that absorbe large
amounts of sensory input from sources interconnected with the systems such as the
stock market, news or point-of-sale transactions. In our airlines 'nervous system'
there exist a business amalgamation of several partner airlines that interact with
each other through data. If data is the focal point of any transaction, imagine the
data flow that will happen every minute in this airlines transaction. Is performing
the transaction in a fail-safe manner should be the only goal? No. This enterprise
nervous system should be monitored—continuously.

What is the basic difference between traditional human monitored systems and an
intelligent monitoring system? In the ordinary systems, data can be queried upon
or 'pulled', but in a monitored system, data is 'pushed' to various endpoints based
on some business rules. These rules govern the monitoring system as well as the
enterprise nervous system.

Chapter 8

[161]

Traditional Systems An Intelligent System

Input Data Stream Input Data Stream

WS1

WS3

EP 2

EP 3

EP 1 WS2

WS - Web Service
EP - Event Processor

Data Store

Data StoreQuery

The above figure shows the traditional enterprise systems and a system designed
with multiple interceptors on the input stream. Each interceptor or 'event processor'
is capable of querying the stream and 'pull' data, and exposes them to other streams
or web services. We can move away from a more 'reactive' system to a 'proactive'
system by continuously monitoring long running business transactions.

An IEP mechanism looks for specific events across various event streams to process
them into meaningful inferences. Take the case of AirAlliance, where if you need a
system to filter the last three reservations of all partner alliances identified through
their itinerary ID, it is possible for a filter to query this data from the stream. Note
that, this will happen when the transaction is in the process and not when the
transaction has finished and logged to the data store. This is important because, if
duplicate reservations are processed by the system from different airlines, the error
gets detected at an earlier stage.

Intelligent Event Processor

[162]

Now, this brings us to a very interesting side effect of this whole system. IEP can be
used as an efficient pre-processing mechanism for a business transaction.

You often see today, enterprises interconnected with a large amount of events,
generated through various 'emitters' like business processes. Analyzing symptoms is
really critical to identify and correct errors in the system.

An ideal event processor should have all of the following facets:

Aggregate: Ability to aggregate and filter events, based on pre-defined rules.
Correlate: Associating events for long running business events.
Notify: Should be 'trigger-happy' in raising alarms, in case of exceptions.
Communicate: Ability to communicate with other processors and
web services.

IEP Service Engine
The IEP Service Engine is part of the Java Business Integration (JBI) container. The
JBI runtime manages the lifecycle of the Service Engine. IEP Service Engine is the
backbone of the event processing system that collects, processes, and routes business
events in a real time fashion. The IEP engine internally uses a database engine like
Java DB for business event processing.

•

•

•

•

Chapter 8

[163]

One of the caveats though is that the IEP Service Engine can enumerate events
reaching that particular JBI container to which it is bound. In Chapter 3 on Service
Engines, we discussed various Service Engines supported by the JBI container. IEP
Service Engine, which is one among them, can work with all of the other Service
Engines including BPEL Service Engine, XSLT Service Engine, and other Binding
Components discussed in Chapter 4 on Binding Components.

Client
JBI Message

Router

HTTP/SOAP Binding
Component

Application Server Bridge

Application Server

Java EE Service
Engine

BPEL
Service Engine

JBI Runtime Environment

The figure above depicts the JBI Runtime and IEP Service Engine interaction. This
is in no way different to how the lifecycle of the Service Engines are controlled by
the JBI container (at least for the developer). The IEP runtime component obtains
data via the HTTP/SOAP Binding Component and provides data through the
File Binding Component (For more information on Binding Components, refer to
Chapter 4). The IEP runtime component provides the physical connectivity between
the JBI Message Router in the JBI Runtime and external SMTP clients and servers.

Intelligent Event Processor

[164]

IEP processes inbound business events through 'windows' or data streams in units
of time. Within the JBI Runtime, Binding Components and other Service Engines
can act as containers too. Service Units (SU) can be deployed to installed Binding
Components and Service Engines. The Service Unit can describe what services are
provided and consumed by the component.

Input Endpoints Output Endpoints

Intelligent Event Processor

Table

Stream
Relation

Table

Stream

Event processors can receive events from any number of Input Endpoints. There are
basically two kinds of Input Endpoints:

1. Stream Input Endpoint: A web service, which other applications can invoke
to send events. Streams are similar to event histories.

2. Table Input Endpoint: Denotes a SQL database table. The event processor
can read from the table, while the other applications can write to the table.

The event processors deliver events to other applications through its Output
Endpoints. It can have multiple Output Endpoints. There are three kinds of
Output Endpoints:

1. Stream Output Endpoint: A web service, which other applications can
invoke to receive events created by the event processor.

2. Relation Output Endpoint: A web service, which other applications can
invoke to receive updates to a relation created by the event processor.

3. Table Output Endpoint: Allows an event processor to provide static data
output to other applications through SQL database table.

Continuous Query Language (CQL)
The Continuous Query Language is used as the language syntax of the IEP flow, and
is built on SQL. CQL uses SQL for event matching, abstraction, and transformation.
CQL processes events and uses a database engine to do so, minimizing possible
network usage.

Chapter 8

[165]

The IEP Service Engine supports the standard operators defined by the
CQL. Apart from that, it also supports some operators like Tuple Serial
Correlation and Attribute-based windows from Sun Microsystems. The IEP
Service Engine is the only Service Engine that supports the JBI specification.

In NetBeans, you can design IEPs visually using the IEP editor. The flows that you
define in the diagram are translated to CQLs by the Service Engine.

The IEP Editor and Palette
NetBeans's IEP Editor is the GUI for creating event processors that can be deployed
to the JBI IEP Service Engine. An IEP editor helps you to create event processor
schematic diagrams through a friendly interface. Typically, you would use this editor
to compose event processors by drag-and-drop operators from the palette provided.
The IEP editor is primarily for the following tasks:

Create and save event processors.
Validate event processors for Input/Output types
Generate a WSDL interface for the event processor

The following figure shows the NetBeans IEP Editor along with the operator
palette window:

•
•
•

Intelligent Event Processor

[166]

The palette window has several categories of operators that can be
dragged-and-dropped into the IEP Editor window (workspace) to create rules.

IEP project system is actually a NetBeans plug-in that comes as part of the OpenESB
bundle. You can create a new SOA | Intelligent Event Processor Module to start
with as shown in the following figure:

Chapter 8

[167]

The IEP Module Projects works with SOA | Composite-Application project system
to generate Service Engine deployment assembly for event processor deployment.

The following table briefly defines each operator and its functionality. You can create
an IEP process with these operators provided that their input and output types match.
For input and output types of these operators refer to the later section in this chapter.

Operator Usage

Relation Aggregator Enables grouping of events by a specified relation for statistical
purposes.

Time-Based Aggregator Enables grouping of events by time slots for statistical purposes.

Tuple-Based Enables grouping of events by sequential index for statistical
purposes.

Relation Map Enables joining of multiple relations.
Stream Project and Filter Enables filtering of events or modifying selected event attributes.
Tuple Serial Correlation Enabling correlation of sequential events.
Steam Input Enables event collection.
Table Input Enables provisioning of extra event information using a

relational table.
Relation Output Enables you to define notification of changes to a relation.

Intelligent Event Processor

[168]

Operator Usage
Steam Output Enables you to define event notification.
Table Output Enables definition of relational tables for extra output data.
Delete Stream Enables definition of monitoring event deletion from a relation.
Insert Stream Enables monitoring of event insertion to a relation.
Relation Stream Enables monitoring of event deletion from or insertion to a relation.
Table Enables a snapshot of the current state of a relation.
Distinct Enables removal of duplicate events in a relation.
Intersect Enables definition of relation intersection.
Minus Enables definition of difference between two relations.
Union Enables definition of the union of unique events from

multiple relations

After creating an IEP module, the first operator you need to configure is the input
operator. The IEP process receives stream input containing the itinerary data of
guests from different airlines. A partition-based stream converter is used to monitor
the last couple of reservations from all the partner airlines.

Drag-and-drop the Stream Input operator into the workspace. In the Stream Input
Property Editor, we define Attributes, Data Types, and the Size, which will be
updated in the IEP table. Enter ItineraryStream as the Name of the operator.

Chapter 8

[169]

Once the input is defined, you can create a TupleBasedWindow stream
converter that takes a pre-defined size of entries and pipe it to the stream output.
Drag-and-drop the TupleBasedWindow stream converter into the palette. Now,
drag-and-drop the arrow head from the ItineraryStream icon to the arrow head of
the TubleBasedWindow0 icon.

Double-click on the TupleBasedWindow operator. The Attributes are automatically
populated. In the Size filed enter 3. This is because, at any time, we want to process
only three itineraries. This is shown in the following figure:

Intelligent Event Processor

[170]

Now, drag-and-drop the TableOutput operator into the workspace and connect the
arrow head of the TupleBasedWindow0 icon to the arrow head of the TableOutput0
icon as shown in the following figure:

Now, double-click on the TableOutput operator to view the properties dialog. Click
the IsGlobal check box and enter the Global ID as CurrentItinerary. This will be the
name of the table created by the IEP Service Engine to store the IEP processing result.

Build the IEP module and deploy the module to a composite application.
For more information and some examples on an IEP based module, refer to
Chapter 10 – Building a Sample Application.

Chapter 8

[171]

Validating Event Processors
IEP Editor can validate .iep files for syntax and other errors including input/output
type mismatch for the operators. You can invoke the validation operation by clicking
on the Validate button at the top of the editor. When the validation operation
is invoked, the IEP validates against some predefined rules and the errors and
warnings are shown in the output windows, displayed as follows:

In the above mentioned IEP, the output stream is defined but not piped to the
TupleBasedWindow.

When you save an IEP process, the IEP Editor generates a WSDL that serves as an
endpoint for the IEP process. You are not supposed to change any section of the
generated WSDL document.

Intelligent Event Processor

[172]

Operators Input and Output Types
Operators can take streams or relations as input, and output streams, relations, or
entire tables. Operators can be categorized by what their input and outputs consist of
according to the following table:

Operator Input Type – Output Type
Relation Aggregator Relation - Relation
Time-Based Aggregator Stream - Stream
Tuple-Based Aggregator Stream - Stream
Relation Map Relation - Relation
Stream Projection and Filter Stream - Stream
Tuple Serial Correlation Stream - Stream
Stream Input None - Stream
Table Input None - Table
Relation Output Relation - None
Stream Output Stream - None
Table Output Relation - None
Insert Stream Relation - Stream
Delete Stream Relation - Stream
Relation Stream Relation - Stream
Table Relation - Table
Distinct Relation - Relation
Intersect Relation - Relation
Minus Relation - Relation
Union Relation - Relation
Union All Relation - Relation
Attribute-Based Window Stream - Relation
Partitioned Window Stream - Relation
Time-Based Window Stream - Relation
Tuple-Based Window Stream - Relation

From the above table, you can infer some examples of valid IEP rules:

1. Stream Input (Input) -> Tuple-Based Aggregator (Stream – Stream) - >
Stream Output.

2. Stream Input (Input) -> Attribute-Based Window (Stream – Relation) ->
Relation Stream -> Stream Output.

Chapter 8

[173]

3. Stream Input (Input) -> Partitioned Window (Stream – Relation) -> Union
(Relation – Relation) -> Table (Relation – Table) -> Table Output

In Chapter 10 on Building a Sample Application, we will be creating some IEPs to
monitor the airlines reservation stream.

The above figure shows how you can connect operators based on the input types
shown in the table.

Testing IEP Projects
When the IEP is invoked, the stream data is stored in the CURRENTITINERARY table.

The IEP example shown in this chapter needs a stream input simulator
to test the IEP process. The source code bundle provided on the site
has a TestItineraryIEP NetBeans project that reads an external data file
and sends a data stream to the IEP module using the SheperdDriver
(com.sun.jbi.engine.iep.core.runtime.client.pojo.
SheperdDriver). The project is available under src\PartG\
TestItineraryIEP.

You can also test the project by creating a test case in the composite application.

Intelligent Event Processor

[174]

NetBeans IDE 6.0 and above features an IEP Editor for creating IEPs that can be
deployed to a JBI container as a composite application. Each event processor that
you create can work with a single message stream. The common actions that you
perform through this editor are defining actions like simple filtering, routing, and
aggregations over a period of time (window). A simple example could be to create
an IEP that monitors the reservation process from different airlines over a period
of time.

The JBI container is part of the Sun Java System / GlassFish Application Server.
In order to work with the IEP Editor, you need to start this server and also the IEP
Service Engine highlighted in the following figure:

As discussed earlier, the IEP Service Engine internally uses the Java DB. Hence, make
sure that the Java DB is running through NetBeans.

When you start the IEP Service Engine for the first time, it creates a set of tables that
are either data tables containing data related to your IEP applications or internal tables
used by the Service Engine. Do not try to alter or delete the internal tables created by
the IEP Service Engine. The internal tables can include the following tables:

Chapter 8

[175]

EMS_PLAN: This table tracks deployment of event processors and assigns
an Instance ID. Each time you deploy an IEP, an entry appears indicating the
event processor has been deployed.
EMS_OUTPUT: This table is updated every time another table is updated.
Each time a specific table is updated, it will receive the same record with a
new timestamp.
EMS_PROCESSING_STATE: The IEP uses this table to restart IEP processes
after an interruption.
EMS_TABLE_USAGE: This table assists in garbage collection. For each data
table, this table lists the operators that subscribe to the information.

To deploy and test your IEP process, you must create a composite application
project. Each composite application project instance is a container holding the
deployment configuration for a collection of JBI component subprojects. Each
instance maintains deployment specific data objects, such as WSDL, XSD, and JBI
deployment descriptor files.

NetBeans project system generates the Service Assembly deployment package and
packages Service Unit deployment jars from JBI component projects with updated
deployment configuration as specified by the composite application project. Once
you have created the composite application project and integrated the desired
components into it (including the IEP project), by adding the IEP project as a JBI
module in the composite application, you then compile it and deploy the composite
application project.

•

•

•

•

Intelligent Event Processor

[176]

To test the output of the composite application project, from the NetBeans Services
tab, right-click on the Databases and select New Connection. In the New Database
Connection dialog, provide the Database URL as jdbc:derby://localhost/iepseDB,
user name as iepseDB and password as iepseDB and click OK.

When you have connected successfully with the DB, browse the tables in iepseDB. All
of the tables are auto-generated and you are not expected to alter or delete any of them.

Chapter 8

[177]

A CURRENTITINERARY table is also created. This is the name specified in the
Global property field in the Table Output IEP operator.

Note that along with the CURRENTITINERARY and EMS tables, there
are other tables starting with 'Q'. They are data tables that store the
current output of the operator. There are two basic types of data tables:
one for output types and one for relation types. You are not expected to
alter these tables.

When the IEP is invoked, the stream data is stored in the
CURRENTITINERARY table.

The IEP example shown in this chapter needs a stream input simulator
to test the IEP process. The source code bundle provided in the site has
a TestItineraryIEP NetBeans project that reads an external data file and
sends a data stream to the IEP module. The project is available under
src\PartG\TestItineraryIEP.

Intelligent Event Processor

[178]

Summary
This chapter has provided you an overview of the Intelligent Event Processor and the
IEP Service Engine of the JBI runtime, and has also provided a summary depicting
the need for an event processing tool. The IEP project system comes as a NetBeans
IDE 6.0 plug-in.

Handling Events
In the previous chapters of this book, we saw how to use the NetBeans Enterprise
Pack to build enterprise applications that can integrate with other systems. We saw
how developing systems, based upon receiving and sending messages, are defined
by a WSDL contract. In our approach so far, we have assumed that everything runs
as expected and that no errors occur. Of course, in the real world this is not the case
and so, our business processes defined by BPEL must take into account any errors
that may occur. This process is called fault handling. In this chapter, we will see what
support NetBeans offers to help us effectively manage fault handling within a BPEL
process. NetBeans Enterprise Pack provides support for several different types of
fault handlers and we will discuss each of them in this chapter.

In addition to fault handling, we will also take a look at event handling within a
BPEL process and see how NetBeans can help us in this area.

Within this chapter we will discuss:

Fault handling within WSDL documents
BPEL handlers

Fault handlers
Event handlers
Compensation handlers
Termination handlers

At the end of this chapter, you should have an understanding of the different types
of event handlers within a BPEL process and the support that NetBeans provides us
for managing these events.

•

•

°

°

°

°

Handling Events

[180]

Fault Handling Within WSDL Documents
In Chapter 6 we discussed WSDL documents and how they define the contract
between a consumer and a service provider. Within a WSDL document, operations
are defined along with their input and output messages as shown in the
following example:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWSDL" targetNamespace=
 "http://j2ee.netbeans.org/wsdl/HelloWSDL"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://j2ee.netbeans.org/wsdl/HelloWSDL">
 <types/>
 <message name="sayHelloRequest"> 1
 <part name="inputMessage" type="xsd:string"/>
 </message>
 <message name="sayHelloReply"> 2
 <part name="outputMessage" type="xsd:string"/>
 </message>
 <portType name="HelloWSDLPortType">
 <operation name="sayHello"> 3
 <input name="input1" message="tns:sayHelloRequest"/> 4
 <output name="output1" message="tns:sayHelloReply"/> 5
 </operation>
 </portType>
</definitions>

From a message definition point of view, we can see that this WSDL code contains
five key pieces of information.

1. message sayHelloRequest has been defined.
2. message sayHelloReply has been defined.
3. operation sayHello has been defined.
4. input parameter of type sayHelloRequest has been defined for the message

sayHello.
5. output parameter of type sayHelloReply has been defined for the message

sayHello.

Chapter 9

[181]

The comparable Java definition of this method could be as follows:

public class SayHelloRequest 1
{

}

public class SayHelloResponse 2
{

}

public class SayHello
{
 public SayHelloResponse sayHello (SayHelloRequest request)
 { 3, 4, 5

 }
}

In this Java code, points 1 to 5 represent the same items as defined in the
WSDL document.

If you look carefully at this Java code, you will probably spot something missing;
exceptions. If we wanted to handle errors within the sayHello method, we would
need to specify on the method signature what exceptions the method throws. In
the above code, if we never wanted to say hello to anyone who isn't our friend, we
would define a specific exception for this case and then alter the method signature to
throw the exception.

public class NotFriendFault extends Exception
{

}

public class SayHello
{
 public SayHelloResponse sayHello (
 SayHelloRequest resuest) throws NotFriendFault
}

Handling Events

[182]

This exception can easily be mapped within a WSDL document by specifying a
new fault message and a new <fault> option within our operation. The WSDL to
describe this service then becomes:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWSDL" targetNamespace=
 "http://j2ee.netbeans.org/wsdl/HelloWSDL"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://j2ee.netbeans.org/wsdl/HelloWSDL">
 <types/>
 <message name="sayHelloRequest">
 <part name="inputMessage" type="xsd:string"/>
 </message>
 <message name="sayHelloReply">
 <part name="outputMessage" type="xsd:string"/>
 </message>
 <message name="sayHelloFault"> 1
 <part name="faultMessage" type="xsd:string"/>
 </message>
 <portType name="HelloWSDLPortType">
 <operation name="sayHello">
 <input name="input1" message="tns:sayHelloRequest"/>
 <output name="output1" message="tns:sayHelloReply"/>
 <fault name="notFriendFault" message=
 "tns:sayHelloFault"/> 2
 </operation>
 </portType>
</definitions>

1. A new message is defined called sayHelloFault. This defines the structure
of the message (in this case an xsd:string) that will be returned in the event
of an error.

2. A fault called notFriendFault is defined as the fault message for the
sayHello operation.

To help when defining WSDL messages, we recommend using a naming
strategy to improve readability when accessing messages within a BPEL
process. For example:
Append Request to input message names.
Append Reply to output request names.
Append Fault to fault message names.

Chapter 9

[183]

As you would expect, when defining a new WSDL document within NetBeans, the
New WSDL Document wizard allows faults to be defined at document creation time
(see Chapter 6 for details on creating WSDL documents within NetBeans).

When an operation described in WSDL returns a fault both, the fault type and a
description are returned to the client. In the case of a SOAP message, a returned fault
code may look like the following XML fragment.

<SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Client</faultcode>
 <faultstring>notFriendFault</faultstring>
 <detail>
 <faultMessage>That person is not in your friend
 list.</faultMessage>
 </detail>
</SOAP-ENV:Fault>

Handling Events

[184]

Now that we have discussed how faults are specified within WSDL documents
and how they are represented within XML results, let's discuss the different event
handlers available to BPEL processes, and in particular fault handlers that allow
developers to manage any faults that are thrown during BPEL process.

BPEL Handlers
Within NetBeans, four different types of handlers are available for use within the
BPEL process designer. They are as follows:

Fault handlers
Event handlers
Compensation handlers
Termination handlers

Fault handlers allow exceptions to be caught and managed within a BPEL process.
Event handlers allow events to be triggered when specified messages are retrieved
within a BPEL process or when specific timed events occur. NetBeans provides GUI
support for both fault handlers and event handlers allowing them to be graphically
modeled as part of a BPEL process.

Compensation handlers allow business processes to be rolled back in a similar
fashion to a rollback statement issued against a relational database. Termination
handlers allow specific code to be executed when a BPEL process exits. Both
compensation and termination handlers are defined by XML within a BPEL process.
NetBeans provides editing support for these types of handlers within the Source tab
of the BPEL designer rather than in the Design tab.

Let's discuss each of these handlers in turn.

Fault Handlers
Fault handlers are probably the most common type of handlers that are used within
a BPEL process. The purpose of fault handlers is similar to that of Exceptions in the
Java language, allowing fault cases to be caught and thrown and reported back to the
application that invoked the BPEL process.

Within a BPEL process, we can throw faults if a particular situation occurs. These
faults can be caught by a Catch handler specifically designed to catch the fault, or by
a more general Catch All fault handler.

•

•

•

•

Chapter 9

[185]

The following sample BPEL process shows how an exception can be thrown if a
certain condition exists, and then how it can be caught and passed back to the
calling application.

Handling Events

[186]

To use fault handlers within a BPEL process, the WSDL describing the operations
for the partner link needs to have fault messages specified for each operation that
may return a fault. After we have ensured that fault messages are defined for our
operations, using a fault handler is a 3 stage process:

1. Decide when a fault needs to be thrown and assign a fault and description to
return to the caller.

2. Throw the fault.
3. Catch the fault and return it to the caller.

Deciding when a fault needs to be thrown is dependent upon the business logic
being performed by your application. The BPEL process designer provides lots of
functionality to enable you to catch specific error cases, for example:

Input values are outside of specific ranges
Boolean operations return false
Processing is performed outside of a specified date range.

When you have decided to throw a fault, you will most probably want to specify
an error message that can be returned to the calling application. The BPEL process
designer allows you to achieve this by using the Assign activity.

In this figure, we can see that we are using the BPEL designer's Assign activity to
set the fault message that is going to be returned to the calling application. In this
example, we are using the Concat construct to concatenate several strings together.
The resultant string is then assigned to the faultMessage. In this example, the
faultMessage is being assigned the value. The input—inputRequest, is invalid and
has caused an error where inputRequest is the value of the message received by the
BPEL process.

•

•

•

Chapter 9

[187]

Having decided that a fault needs to be thrown and assigned a fault message, we can
drag the Throw activity from the palette into the BPEL designer to specify that the
fault should be thrown at a specific point in the process.

Throw Activity

To design the fault being thrown, we need to specify some details about the fault as
shown in the following figure:

To complete the definition of the Throw activity, we need to specify three properties:

Name
Fault Name
Fault Variable

The Name property is used purely to help us identify the throw activity within the
BPEL process designer. This is used as an internal name to help us keep track of the
different Throw activities that we may have within a process. In the sample process
shown earlier in this chapter, there is only one Throw activity so it's not too difficult
to keep track of it. In a more complex business process however, you may have
several Throw activities and it's useful to be able to easily identify them.

•

•

•

Handling Events

[188]

Secondly, we need to specify the Fault Name. This is analogous to the class of an
exception in Java code. The Fault Name can be selected from all the defined faults in
the WSDL files of any partners used by the BPEL process. To select the Fault Name,
we need to press the "..." button within the properties window. Selecting this causes
the dialog shown below to be displayed. This dialog shows all the fault messages
that are defined within the partner's WSDL Files in a hierarchical approach together
with all the System Faults that can be thrown. To select a fault, select it in the tree
view and press the OK button.

In addition to the faults defined within the partner's WSDL Files, the following
BPEL System Faults can also be thrown as shown in the following table:

completionConditionFailure Thrown if the completion condition for a "forEach" activity
can never be true.

conflictingReceive Thrown when two or more inbound message activities are
enabled for the same partner link, port type and operation.

conflictingRequest Thrown when two or more message activities are enabled
for the same partner link and operation.

correlationViolation Thrown when message contents do not match the
correlation information.

invalidBranchCondition Thrown if an invalid branch is selected within a "forEach"
activity.

Chapter 9

[189]

invalidReply Thrown if an invalid reply is encountered.
invalidVariables Thrown if invalid variables are encountered.
joinFailure A joinFailure system fault occurs when the join condition

in an activity is false.
mismatchedAssignmentFailure Thrown when incompatible XML is used within an

"Assign" construct.
missingReply Thrown if an inbound message activity is completed

without a corresponding reply.
missingRequest Thrown if a "reply" activity cannot be matched with an

inbound message.
scopeInitializationFailure Thrown if an object cannot be initialized within a

particular scope.
selectionFailure Thrown when a fault occurs within a selection operation.
subLanguageExecutionFault Thrown if an evaluated expression results in an

unhandled fault.
uninitializedPartnerRole Thrown if an activity references an uninitialized

partner link.
uninitializedVariable Thrown if an activity references an uninitialized variable.
unsupportedReference Thrown if the BPEL engine does not recognize the XML

reference-scheme attribute.

Providing a full description of these standard BPEL faults is out of scope for this
book. We suggest that you consult the BPEL language specification for further
details. (http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf).

Finally, after selecting a faultMessage to throw, we need to specify which variable
holds the information or message to return to the calling application. Pressing the
Fault Variable "..." button within the properties window displays a dialog similar to
that shown below, which shows all the variables currently defined within the BPEL
process. Select the appropriate variable from this list and press OK.

Handling Events

[190]

To recap, when throwing a fault we:

1. identify a situation where we want to throw the fault
2. define the message to be sent to the client along with the fault
3. define the fault that we want to send to the client

Now that we have thrown a fault within our BPEL process, we need to catch it and
handle it. In its simplest case, this could be done by returning the fault message
we've just generated to the client application. Alternatively, we can perform some
additional BPEL processing and try to manage the fault case.

To manage thrown faults within a BPEL process, we have two options:

1. Catch a specific fault and deal with it
2. Catch any fault and deal with it

To be able to catch faults and manage them within a BPEL process, we first have to
add a Fault Handler to the process. This is achieved by right-clicking on the BPEL
process and selecting the Add | Fault Handlers menu option.

Selecting this option adds a blank fault handler to the BPEL process as shown below.

Within the empty fault handler we have three options.

collapse the diagrammatic representation of our fault handler
add a Catch handler for a specific fault
add a Catch-All handler for any fault.

•
•
•

Chapter 9

[191]

Only one Catch All handler is allowed per process.

Collapse the view

Add a Catch All fault handler

Add a Catch fault handler for a specific fault.

If we add a Catch All handler, there are no properties to specify. All we need to do
is complete the process by specifying which actions are to be performed as a result
of catching an exception. This is achieved in the same way as a BPEL process is
designed, by dragging activities on to the Catch activity within the BPEL designer.

If we want to handle specific faults in different ways, we can add specific Catch
handlers. This is analogous to having multiple catch statements within a piece of
Java code. Within Java code we can catch any number of specific exceptions. The
fault handlers within the BPEL process allow us to do a similar thing. BPEL runtime
will attempt to match a fault to a specific Catch handler. If that cannot be found then
a fault will be handled by the Catch All handler if it is present.

Handling Events

[192]

For a Catch handler, we need to specify the name of the fault we wish to catch within
the Catch properties window.

Pressing the Fault Name "..." button within the properties window causes a dialog to
be displayed similar to that shown below from which the fault type can be selected.

Event Handlers
A BPEL process is initiated by receiving a message from a client, for example a web
service client. If the process is a synchronous process, then the client will wait for
the BPEL process to complete. The process will execute without any further input
from the client. This is how a typical short-lived process will execute. For more
complex asynchronous processes, it often becomes necessary to send additional
data to the BPEL process so that it can continue processing. BPEL mandates that a
receive activity can only be used to initiate a process and cannot be used afterwards
within a process. In a situation where we wish to send additional data to a running
process, we must use the OnMessage event handler. This event handler acts in a
similar fashion to a receive activity and allows a message to be received by a running
process from one of the process partner links.

Chapter 9

[193]

Within the BPEL process designer, an OnMessage event handler is displayed as
shown in the following figure:

BPEL designer also supports On Alarm events. An On Alarm event is triggered
at specified periods to perform certain processing. On Alarm events are useful for
timing out a process if no response is received from a client within a specified time
period. If an asynchronous process is pending information from a client, an On
Alarm event can be used to force the process to exit if no response is received within
the necessary time period.

To create an OnMessage or an On Alarm handler within the BPEL designer, we
need to add a Pick activity to the process designer.

Pick Activity

Pick activities are added to BPEL processes by dragging the Pick activity icon from
the palette onto the BPEL process. Right-clicking on a Pick activity gives you the
option of adding an OnMessage handler or an On Alarm message handler. Both of
these handlers allow additional actions to be performed after either the message is
received or the time out occurs simply by building up the BPEL process by dragging
additional actions from the palette.

With an On Alarm handler, the handler can be specified to wait for a given period
of time before completing, or it can be specified to wait until a given date and time
before completing.

Alarm Type Description
For Alarm waits for a specified period of time before completing.
Until Alarm waits until a specified date and time before completing.

Handling Events

[194]

The properties for the alarm handler allow the Alarm type to be configured together
with the corresponding timescale as shown in the following figures:

With an OnMessage handler, we need to specify which message the handler is going
to receive and how this corresponds to the WSDL. The following properties need to
be specified.

Property Description
Partner Link The name of the partner link that is sending the message.
Port Type The port type defined within the WSDL document for the

receiving message.
Operation The operation, or method, that is being invoked.
Input Variable The name of the variable within the BPEL process that will

store the state of the incoming message.

Chapter 9

[195]

In addition to specifying these details within the properties page, they can also be
specified within the Property Editor as shown in the figure below. The first tab on
the Property Editor dialog allows the properties described above to be specified so
you can either enter them within the dialog or directly within the Properties page.

As On Message handlers are used within asynchronous processes, it is necessary to
specify the correlations used so that the input message can be applied to the correct
instance of the running BPEL process. When many instances of the same process
are running within the BPEL engine, the engine uses correlations to link together
messages from clients to specific instances of running processes. A correlation set
is basically a unique piece of information passed from the client to the BPEL engine
that can be used to uniquely tie client messages to a running process. A correlation
set is rather like a prime key in a relational database. It can contain one piece of
data just like the prime key of a database table, or it can consist of multiple pieces
of data like a compound key. In this case, the combination of all the data within the
correlation set makes up the unique identifier for the process.

Correlation sets can be created within NetBeans by right-clicking on the BPEL
process within the Design view and selecting the Add | Correlation Set… menu
option. On the resulting dialog, we can select the name we wish to give to the
correlation set and define which properties from the WSDL file we wish to use to
define the set.

Handling Events

[196]

The correlations tab of the Property Editor allows us to specify which correlation set
we wish to use for the specific On Message handler.

Compensation Handlers
Within BPEL processes, Compensation refers to the ability to undo or roll back
activities that have occurred within a particular scope of a running process. A scope
in a BPEL process is analogous to a block of Java code that starts with a '{' and ends
with a '}'. Typically a scope within a BPEL process represents a particular piece
of functionality that is being performed. Within the NetBeans BPEL designer, the
scope of blocks of code is represented by a solid rectangle drawn around a block of
activities. A Compensation Handler is a BPEL code construct that is executed when
a scope is terminated unexpectedly and any processing that has been performed
during that scope needs to be undone.

NetBeans does not provide any provision for graphical editing of Compensation
Handlers within the BPEL designer. To add a Compensation Handler to a BPEL
process, we need to switch to the Source view and manually enter the XML for the
Compensation Handler. Right-clicking on a scope within the BPEL designer and
choosing Goto Source will open the Source view at the beginning of the selected
scope. To add a compensation handler, we need to add an XML element for the
compensation handler

<compensationHandler/>
 <scope name="myScope">
 <compensationHandler>
 <!-- perform activities necessary to undo scope-->
 </compensationHandler>
 <!-- scope activities-->
 </scope>

Chapter 9

[197]

Termination Handlers
A termination handler is in many respects similar to a compensation handler. The
purpose of a termination handler is to provide code to be executed when a BPEL
process is unexpectedly exited. Termination Handlers can be applied to any different
scope within a process and are defined by the <terminationHandler/> element.

The BPEL designer provides no support for designing termination handlers, instead
that must be defined within the XML for the process within the Source view of the
BPEL designer.

The code fragment below shows how a BPEL process may have a compensation
handler and a termination handler defined within a particular scope.

 <scope name="myScope">
 <compensationHandler >
 <!-- perform activities necessary to undo scope-->
 </compensationHandler>
 <terminationHandler>
 <!-- perform activities necessary after unexpected exit-->
 <compensate />
 </terminationHandler>
 <!-- scope activities-->
 </scope>

If no termination handler is defined for a scope then the default termination handler
will be invoked. The default termination handler invokes the default compensation
handler for a given scope, that is,

 <terminationHandler>
 <compensate/>
 </terminationHandler>

Summary
In this chapter, we've looked at the different types of event handlers that can be used
within a BPEL process designed within the NetBeans BPEL designer. We've seen that
there are four different types of event handlers that can be used. Fault Handlers are
used for throwing and catching faults rather like the try ... catch and throw constructs
within Java code. We've seen how we can throw faults and then catch them with
specific fault handlers or catch-all handlers. The second type of handlers we
looked at were Event Handlers and we discussed how these are used to respond to
events—either specific messages or timer messages. Both Fault Handlers and Event
Handlers are supported within the NetBeans BPEL designer allowing drag-and-drop
of components from within the NetBeans palette into BPEL processes.

Handling Events

[198]

Next, we looked at compensation handlers and discussed how these are used to
rollback data within a BPEL process. Finally we looked at termination handlers and
saw how these are called when a BPEL process is terminated unexpectedly. We
saw how the default termination handler invokes the default compensation handler
within a BPEL process scope.

In the next chapter, we're going to bring all the concepts and techniques we've
discussed so far together and build a real world enterprise application using
NetBeans and the NetBeans Enterprise Pack.

Building a Sample Application
In the previous chapters, you were introduced to NetBeans IDE and the IDE's
capability of designing enterprise applications using the built-in SOA tools. You also
learned the usage of various editors including WSDL and XML schema editor. In
addition, you were introduced to NetBeans BPEL designer and the various runtime
requirements for building and running your enterprise applications.

In this chapter, let us start by designing a simple enterprise application by creating
a couple of partner services and some BPEL modules and make them interact with
each other to perform some basic tasks. If you have not read the previous chapters,
you may not be able to understand some of the tasks that we will perform in this
chapter. As a minimum requirement, read Chapter 2 – Getting Started and
Chapter 5 – BPEL Designer.

This chapter also assumes that you have already configured your NetBeans IDE to
reflect the following functionalities:

Create BPEL Modules.
Start/Stop, Sun Java System / GlassFish Application Server.
Start and manage Java DB.

For the purpose of this sample application, we will be using NetBeans IDE,
GlassFish Application Server and Java DB to build a simple application.
The author recommends running the samples in NetBeans IDE that comes
bundled with OpenESB components. You can download the bundle from
https://open-esb.dev.java.net/Downloads_OpenESB_Addons_NB6.html.

•

•

•

Building a Sample Application

[200]

About the Sample Application
The sample application we are going to develop is a simple travel reservation
collaboration application called AirAlliance (AA). AirAlliance is an airlines
alliance system that attempts to unify the reservation process for all its partner
airline companies. The advantage of such a system having of a single interface for
booking airline tickets across multiple connections and legs. Some of the design
considerations for building such a system should include:

1. Support for interacting with multiple partner systems.
2. Ability to process itinerary event through intelligent event processors.
3. Flight schedules are formulated to permit almost seamless travel that may

include several different carriers within the alliance, on a single ticket.

Although these requirements are easy to build, one should also consider the
technologies involved in creating a system that acts as an orchestration point for all
the different exposed services from the airlines company.

The sample application we are developing is not an enterprise grade application. It
is designed to highlight some of the features of NetBeans and the BPEL Designer.
However, you can use this application to build your own full fledged application.
In this chapter, we will focus only on the collaboration part of the AirAlliance
application and the use of OpenESB binding components to successfully interact
with partner services.

The sample application is divided into multiple parts, each highlighting a particular
BPEL capability. Except the first part, each part is an incremental update of the
previous part. These parts are described in the following table:

Example Description
Part A We will create a simple web service for NorthAir airlines from an EJB

project. We will create a business process that sends guest itinerary
information to the web service and receives a confirmation. Basic BPEL
activities including receive, assign, invoke, and reply are depicted through
this part. Whenever a request for reservation is made, the NorthAir Web
Service is invoked. The NorthAir Web Service confirms the reservation with
a success message.

Part B This sample code shows how you can use the JDBC BC to update Java DB
from the BPEL process. Whenever a request for reservation is made, the
NorthAir Web Service is invoked and the itinerary data is updated in the
SouthAir DB through the JDBC binding component.

Part C This sample code shows how you can use the File BC along with JDBC BC
to store itinerary data in Java DB and in the file system.

Chapter 10

[201]

Example Description
Part D This sample code shows how you can use the JMS BC along with JDBC BC

and File BC to send itinerary data to JMS Destination. Whenever a request
for reservation is made, the itinerary information is updated in the file
system using the JBI File BC. This file can be constantly monitored by an
external process. Now, the itinerary data is send to EastAir's JMS Queue.
EastAir's JMS Queue Listener can get the itinerary information for
further processing.

Part E This part introduces the sequencing and branching properties of BPEL.
When a request for reservation is made, the BPEL process checks the
destination sector. If the destination is set to 'SFO', then the itinerary is
routed to NorthAir WS otherwise it is routed to WestAir Web Service.
Since WestAir Web Service is new, we create an identical web service using
NorthAir Web Service and name it WestAir Web Service. They do not do
any actual itinerary processing but they send a confirmation message back
to the client so we can find out which airlines service was invoked. So far
through the earlier parts of this example, we have created a sequential
process for invoking NorthAir Web Service, stored an itinerary and sent
an itinerary to a JMS physical destination. Ideally, updating the partner
airlines repository is independent of itinerary processing. In spite of failed
reservations, we update the data store for the purpose of maintaining
a waiting list (Of course without a confirmed reservation ID). Hence,
UpdateItinerary sequence is introduced as a flow branch to process
the itinerary branch, so both the sequences work in parallel. This part
also shows how as part of the UpdateAirlines sequence, we send the
itinerary information to the travel agent's FTP server. Uploading itinerary
information to an FTP server is done through FTP BC.

Part F The reservation process is updated to perform pre-processing before
invoking the partner services. This will be useful later to build your own
validation rules before invoking the partner services. A pre-processor
Web Service performs a check on the sectors and sends a reply back to the
process stating if the reservation could be processed. For this example, all
reservation requests from 'BLR' to 'SFO' are rejected and an auto responder
is sent to a predefined email address. The pre-processing also includes
checking if the source and destination sectors are the same, before invoking
the expensive partner service's query operations. You should have more of
these checks in your real applications.

Building a Sample Application

[202]

Example Description
Part G This part shows how you can process your data stream to do some

intelligent pre-processing before performing any meaningful action on the
data. In the previous parts, you used a File BC to create an XML file that
contained the itinerary data. This itinerary data can be converted into a
stream and can be passed through Intelligent Event Processors to project
or filter the stream or to restrict the itinerary count. This part contains one
intelligent event processor that does the following:

Processes all itineraries obtained from the stream for the
last three seconds.
Uses stream filter to remove itinerary preferences data in order to
make the itinerary data set smaller.
Contiguous ordering of itinerary data.
Stores the filtered itinerary record in database.

•

•

•

•

Source code for all of the above parts is available at
http://www.packtpub.com/support/. The sources are
available as NetBeans projects files. Follow the instructions provided
in the Readme file in each part to set up the environment.

Getting Started
Before creating the first part of our sample application, we need to make sure that the
runtime environment is set up properly. The sample comprises multiple NetBeans
modules, some of which are deployable to servers. Hence, before starting with the
sample, start your Application Server and BPEL Engine. For our sample, we are
using Sun Java System / GlassFish Application Server, which has BPEL engine
integrated. Go to the Services tab | Servers | GlassFish V2. Right-click on this
node and click on Start. Refer to Chapter 2 on Getting Started for setting up
the environment.

Chapter 10

[203]

Throughout this chapter, there are references to both GlassFish
Application Server and Sun Java System Application Server. You can set
up either of these servers to work with the examples given in this chapter.
Sun Java System Application Server is just a supported version of the
community based GlassFish Application Server and there may not be any
significant differences in the way SOA applications are handled by them.

Creating Partner Services
Before building our sample application, let us understand some basics of NetBeans
SOA modules and UI components. This section builds a simple application depicting
how you can easily build a composite application using NetBeans.

First, we will create a web service and add an itinerary processing operation. From
the New Project wizard select Enterprise | EJB Module.

Building a Sample Application

[204]

The following screenshot shows the New Project wizard with the required
project highlighted:

Type the Project Name as NorthAirEJB. For the first part of the demo, NorthAirEJB
will have one web service with one operation called processItinerary. This
method gets passenger details from BPEL implementation and sends a confirmation
message back.

You need to select a target Java EE server for your EJB project. You can either select
Sun Java System Application Server or the GlassFish Server.

Chapter 10

[205]

JAX-WS is an important part of the Java EE 5 platform that simplifies
the task of developing web services using Java technology. It addresses
some of the issues in JAX-RPC 1.1 by providing support for multiple
protocols such as SOAP 1.1, SOAP 1.2, XML, and by providing a facility
for supporting additional protocols along with HTTP.

After creating an EJB module (Stateless Session Bean), let us create a web service by
selecting the Web Service action by right-clicking the EJB Module project.

Provide the Web Service Name as NorthAirWS and provide a Package name. You
can create an empty web service or delegate a session bean. For the purpose of this
sample, we will create an empty web service.

Building a Sample Application

[206]

Now, right-click the Web Service and add a new operation as shown in the
following screenshot. The purpose of any web service is to receive requests for a
service, process them, and respond to the client. The operation that we are going to
create accepts passenger details and sends a confirmation message back to the client.

Chapter 10

[207]

This screenshot shows the Add Operation dialog box. We have added one method
named processItinerary that returns a String object and accepts passenger details
like First Name, Last Name and travel information as input parameters.

At this point let us take a look at our generated Web Service code. A snippet from the
file NorthAirWS.java is shown as follows:

package org.airalliance.northair;

import javax.ejb.Stateless;
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebService;

@Stateless()
@WebService()
public class NorthAirWS {

/**
 * Web service operation
 */
 @WebMethod(operationName = "processItinerary")
 public String processItinerary(@WebParam(name = "firstName")
 String firstName, @WebParam(name = "lastName")
 String lastName, @WebParam(name = "source")
 String source, @WebParam(name = "destination")
 String destination, @WebParam(name = "travelDate")
 String travelDate, @WebParam(name = "seatPreference")
 String seatPreference, @WebParam(name = "foodPreference")
 String foodPreference, @WebParam(name = "guestID")
 String guestID, @WebParam(name = "seqID")
 int seqID) {
 //TODO write your implementation code here:
 return "Processed Reservation";
 }

Now we have a simple web service with one operation. In order to add this web
service as a partner link, we need to deploy this web service in GlassFish Application
Server. Right-click the EJB module and select Undeploy and Deploy to deploy the
project to the default server.

When you deploy a Web Service to a web container, NetBeans IDE lets you test the
web service to see if it functions as you expect. The tester application, provided by
the GlassFish Application Server, is integrated into the IDE for this purpose.
Right-click on the Web Service and select Test Web Service to test your Web
Service. You can go to the Services tab | Servers | GlassFish V2 | Applications |
EJB Modules and check if your web service is deployed properly. If the Web Service
is deployed, you can find NorthAirWS entry under GlassFish V2 | Applications |
EJB Modules | NorthAirEJB.

Building a Sample Application

[208]

Creating the BPEL Process
Now that we have a Web Service running, let us create a business process to invoke
the web service.

You have to create a BPEL Module and add it to a Composite Application in order
for the business process to be deployed. From the New Project wizard, select
SOA | BPEL Module.

Add BPEL_Reservation as the Project Name.

Chapter 10

[209]

Once you have created a BPEL Module, it is time to create a BPEL process.
Right-click on the Process Files and select New | BPEL Process to create a New
BPEL Process as shown in the following screenshot:

The New BPEL Process wizard guides you through various steps
involved in creating a BPEL Process. Add the Target Namespace as
http://airalliance.org/bpel/BPEL_Reservation/BP_Reservation.

Building a Sample Application

[210]

The following diagram shows a BPEL Process that does nothing. You cannot do
much with this BPEL Process as it is incomplete and misses a receive activity. Note
that every BPEL process should start with a receive or a pick activity.

The purpose of static analysis is to detect any undefined semantics or
invalid semantics within a process definition that was not detected during
the schema validation. Any process definition that fails one or more of
these checks must be rejected by the WS-BPEL processor. That means,
if you have invalid semantics in your BPEL process, the process header
turns red.

When a BPEL process is created by the New BPEL Process wizard, it creates an
empty activity:

The following code shows the source of the empty BPEL process:

<?xml version="1.0" encoding="UTF-8"?>
<process
 name="BP_Reservation"
 targetNamespace=
 "http://airalliance.org/bpel/BPEL_Reservation/BP_Reservation"
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Chapter 10

[211]

 xmlns:tns=
 "http://airalliance.org/bpel/BPEL_Reservation/BP_Reservation">
 <sequence>
 </sequence>
</process>

Now, drag-and-drop the NorthAir Web Service implementation from your project
panel into the BPEL diagram. This action will import the public interfaces of
NorthAir Web Service into the Process Files | Partners folder. You need to create
a partner link for invoking this Web Service. When you drag-and-drop NorthAirWS
into the BPEL diagram, the partner link property box is shown. Provide
WS_NorthAirImpl as the partner link name and select the WSDL File:

Building a Sample Application

[212]

Now, right-click on Process Files | New | WSDL Document to create a BPEL
implementation of the process.

The New WSDL Document wizard will guide you through the process of
creating a WSDL document from an existing XML schema file as shown in the
following screenshot:

Chapter 10

[213]

Select the auto generated NorthAirWS_xsd_1.xsd file. From the EJB module, when
you add web services and operations, this file gets updated. You can also manually
create a schema and select that file in the Import XML Schema File option.

After selecting the schema file, you can configure the input and output as shown in
the following screenshot:

Building a Sample Application

[214]

Change the Message Part Name for Input to inputItinerary and select the Element
as ns:processItinerary. To select the element, click on the […] button and select the
processItinerary element as shown in the following screenshot:

After selecting the input types, click Next to select the Binding Type. Leave the
Binding Type as SOAP for now and select the Binding Subtype as Document
Literal as shown in the following screenshot:

Chapter 10

[215]

The following screenshot shows the graphical representation of the WSDL
document created from the XML schema. Once you have successfully added a
WSDL document, you can drag-and-drop WSDL document into BPEL diagram to
create a partner service.

Now, you need to drag-and-drop WSDL_NorthAir_Reservation.wsdl file into
the diagram to create the WSDL implementation. When you drag–and-drop the
WSDL file over the BPEL diagram automatically some parts of the diagram gets
highlighted as shown in the figure below. Ensure that you drop the file only on the
highlighted circle.

Building a Sample Application

[216]

When you drop the WSDL file on the diagram, you will be prompted to enter the
partner link information. Enter the partner link name as BPEL_NorthAirReservation
and select the WSDL File as shown in the following screenshot:

Chapter 10

[217]

Now, let us add activities to this BPEL process to make it deployable as a JBI module.
After adding receive, invoke, and reply activities, our BPEL process looks more
complete. The following figure shows semantically correct business process:

It works this way. The BPEL process receives a request for NorthAir Web Service
to process a guest itinerary. The BPEL process receives the request and invokes the
NorthAir Web Service operation processItinerary added as a partner service. Upon
getting itinerary confirmation, the BPEL process replies back to the invoking service.

For more information on using the BPEL palette activities, refer to Chapter 5, which
covers the BPEL Designer.

Building a Sample Application

[218]

The receive activity is always mapped to the BPEL implementation of the partner
service. You have the option to select the correct operation from the partner link
WSDL. The invoke activity's partner link points to the EJB implementation. The
following screenshots shows the Receive, Invoke, and Reply activities configuration:

Chapter 10

[219]

NetBeans offers an intuitive way of processing and directing BPEL process data
through BPEL mapper. For more information on the BPEL, refer to Chapter 5 on
BPEL Designer. The screenshot on the next page shows how we can copy the
guest itinerary data across variables. Once you have successfully added Receive,
Invoke and Reply activities as shown in the above figures, you need to assign
variables. Drag-and-drop an Assign activity from the Palette between Receive
and Invoke activity. Switch to Mapper view from Design View.

Building a Sample Application

[220]

From WSDL_NorthAir_ReservationOperationIn | inputItinerary, drag-and-drop
the itinerary details to the corresponding elements under ProcessItineraryIn |
parameters as shown in the following screenshot:

Now, when NorthAir Web Service processes the request and sends a response back,
the output variable of Invoke activity should be copied to the variable associated
with the Reply activity so that the invoking web clients get the appropriate message.
Add one more Assign activity between Invoke activity and Reply activity. Now,
switch to Mapper view and copy ProcessItineraryOut variable to WSDL_NorthAir-
ReservationOperationOut as shown in the following screenshot:

Chapter 10

[221]

Our business process doesn't do much. It sends the guest itinerary to the NorthAir
Web Service and returns the confirmation message back to the caller.

Assume, if NorthAir Web Service has the option of providing an operation, to check
if there is seat availability on a particular date. Our business process should check
the availability before deciding on the next action. The following diagram shows
an if activity added to the process. The isAvailable() method of NorthAir Web
Service returns a Boolean, based on the seat availability.

When the seat is not available, BPEL process requests the NorthAir Web Service to
process the guest itinerary through another service called SouthAir and returns the
confirmation back to the caller. This is transparent to the caller.

Ideally, NorthAir should not invoke SouthAir's service. In fact, NorthAir need not
know about other air alliance partners. So, create another partner service called
AirAlliance that can invoke processItinerary operations of other airlines.

Building a Sample Application

[222]

Now, consider the following implementation. The request comes for NorthAir
reservation, but upon availability check, the itinerary is routed to SouthAir
reservation system.

Now, look at the code showing the if activity and the condition:

<if name="Check_Availability">
 <condition>
 ($NA_isAvailableOut.parameters/return = false())
 </condition>
 <sequence name="Sequence1">

Chapter 10

[223]

 <invoke name="InvokeSA_WS" partnerLink="WS_AirAlliance"
 operation="SA_processItinerary" portType="ns1:WS_AirAlliance"
 inputVariable="SA_processItineraryIn1"
 outputVariable="SA_processItineraryOut1"/>
 <assign name="Assign2">
 <copy>
 <from>$SA_processItineraryOut1.parameters/return</from>
 <to>$NA_CheckAvailabilityOperationOut1.part1/return</to>
 </copy>
 </assign>
 <reply name="ReplyFromAA" partnerLink="NA_CheckAvailability"
 operation="NA_CheckAvailabilityOperation"
 portType="ns2:NA_CheckAvailabilityPortType"
 variable="NA_CheckAvailabilityOperationOut1"/>
 </sequence>
<else>
 <sequence name="Sequence2">
 <invoke name="InvokeNA_WS2" partnerLink="WS_AirAlliance"
 operation="NA_processItinerary" portType="ns1:WS_AirAlliance"
 inputVariable="NA_processItineraryIn1"
 outputVariable="NA_processItineraryOut1"/>
 <assign name="Assign3">
 <copy>
 <from>$NA_processItineraryOut1.parameters/return</from>
 <to>$NA_CheckAvailabilityOperationOut2.part1/return</to>
 </copy>
 </assign>
 <reply name="ReplyFromAA2" partnerLink="NA_CheckAvailability"
 operation="NA_CheckAvailabilityOperation"
 portType="ns2:NA_CheckAvailabilityPortType"
 variable="NA_CheckAvailabilityOperationOut2"/>
 </sequence>
</else>
</if>

A later part of this chapter develops a more complex BPEL process with If activities.

Creating a Composite Application
NetBeans supports combining sub-modules like BPEL into a Composite Application
and deploying that Composite Application to Java Business Integration (JBI) run
time. The Composite Application project option in NetBeans is used to create a service
assembly that can be deployed to the JBI server. Within the Composite Application
project, you can assemble an application that uses multiple project types, build JBI
deployment packages, and monitor the status of JBI server components.

Building a Sample Application

[224]

The JBI server can have different service engines. One of them is a BPEL
service engine. In order to deploy a Composite Application to the BPEL
runtime, it must have at least one JBI module.

For creating a Composite Application, use the New Project wizard's SOA |
Composite Application option. Once Composite Application is created, right-click
on the application and select Add JBI Module to add the BPEL module project.

Part A - The Approach
The last section provided an overview of NetBeans capabilities for creating business
processes and composite applications. In the coming sections, we'll use the above
example as a background to create more complex composite applications. We willWe will
be building the sample application incrementally, so that we can thoroughly discuss
the tools used during each step. For the purpose of this sample, we need to build the
following components:

Chapter 10

[225]

1. Partner Services: Partner services are external web services that our business
process interacts with, to form an effective orchestration. From the point
of view of our business process, the airline company's web services are the
partner services. In our sample application, partner services are exposed
as web services through two stateless session beans. Each stateless session
bean representing a web service can get a passenger itinerary and process a
reservation. Each partner service works with its own DB.

2. BPEL Module: In order to create a business process document, we need
to create NetBeans' BPEL module. The BPEL module comprises of BPEL
(.bpel) file, WSDL document derived from the partner service's XML
schema, and the partner service's XML schema imported through ws-import
command.

3. Service Assembly: BPEL module cannot be deployed directly to Sun Java
System Application Server. Only composite applications or service assemblies
having at least one JBI module can be deployed to the BPEL engine of the
server. For the purpose of this sample, we'll create a Composite Application
that has BPEL module deployed as JBI module. For more information on
BPEL engine, JBI modules, and Service Assemblies, refer to Chapter 1.

Our BPEL process communicates with the partner services through their
public interfaces. These interfaces are defined in partner-specific WSDL
files. When you drag-and-drop a partner service into a BPEL process,
these interfaces are imported.

Note that our partner service implementation is minimal as it is of less interest to
a BPEL developer. You can download the code and the DB scripts and work on an
appropriate implementation.

Building a Sample Application

[226]

The following business process diagram depicts our example:

BPEL process is also a web service. Just like any other web service, BPEL process
has a companion WSDL file that describes its public interfaces. This WSDL interface
enumerates the operations and messages that clients can target in order to create an
instance of the process.

BPEL processes are deployed to the BPEL runtime, which manages the process
lifecycle. All BPEL processes start with receive or pick activity, which is responsible
for initiating a process. When a Receive activity is invoked, BPEL runtime will create
BPEL process instance and hand the message to the process instance for processing.

In the above figure, the BPEL process receives a request. To fulfill the request,
it invokes the involved web service (NorthAirWS using the partner link
NorthAirWS_PL) and finally responds to the original caller. Since the BPEL process
communicates with another web service, it relies on the WSDL description of the
web service (NorthAirWS WSDL) invoked by the process.

Chapter 10

[227]

You now know how to create a web service from an EJB. Let us do that one more
time. First we need to create an EJB project. Select File | New Project. Select an
EJB Module.

Give NorthAirEJB as the name for our new EJB project. You can either select
Glassfish V2 or Sun Java System Application Server as the target Server. You can't
choose any other Java EE server you have already configured because we will
be dependent on ESB components integrated with Glassfish/Sun Java System
Application Server.

When you have the NorthAirEJB project ready, you have to create a Web Service
(session bean) to consume requests. Right-click on NorthAirEJB and select
New | Web Service.

Enter NorthAirWS as the name for our web service. Provide a valid Package name.
You can either create a web service from scratch or use an existing session bean.

After creating the web service, add a web service operation in NorthAirWS.java as
shown in the following code snippet:

@WebMethod(operationName = "processItinerary")
 public String processItinerary(@WebParam(name = "firstName")
 String firstName, @WebParam(name = "lastName")

Building a Sample Application

[228]

 String lastName, @WebParam(name = "source")
 String source, @WebParam(name = "destination")
 String destination, @WebParam(name = "travelDate")
 String travelDate, @WebParam(name = "seatPreference")
 String seatPreference, @WebParam(name = "foodPreference")
 String foodPreference, @WebParam(name = "guestID")
 String guestID, @WebParam(name = "seqID")
 int seqID) {
 //TODO write your implementation code here:
 return "Processed Reservation";
 }

processItinerary operation receives itinerary information and sends a
confirmation message back to the client. You can modify the code to add any specific
reservation implementation. Right-click on NorthAirEJB module and select Build to
compile the source file. Then right-click on NorthAirEJB and select Undeploy and
Deploy. This action will deploy the web service in the target server.

The first section in this chapter showed you how to create a BPEL process from a BPEL
module. Follow the steps to create a BPEL Process by name ReservationBP. This will
create a ReservationBP.bpel file. You can either use the Source view or the Design
view to edit the files. Create Receive, Invoke, and Reply activities as shown in the
process diagram. Remember to assign variables using the BPEL mapper.

From the Source Code – Part A folder
Open NorthAirEJB, ReservationBPEL and AirAlliance_CA NetBeans
project files and go through the code. When you open them for the
first time, you will get a 'Resolve References' warning. You may need
to set the correct target server for the EJB module and set the correct
path to the ReservationBPEL jar file for the composite application.
Also note ProcessReservation.wsdl. This WSDL is the Web
Service that initiates the BPEL process. If you are making changes to the
ReservationBP.bpel file in ReservationBPEL project, you need to
update the JBI module again in this project. Right-click on this project and
choose Edit Application Configuration.
You can see two WSDL ports configured with SOAP bindings.

Chapter 10

[229]

Once you have the BPEL process ready, create a composite application as shown
in the first section to act as a container for our BPEL process. Following is a simple
composite application:

Note that our composite application has two WSDL Ports. Both are exposed through
SOAP binding. This is because even though we have created an EJB, it is deployed
as a web service. You can also try out the EJB binding component of OpenESB to
directly invoke a session bean.

Testing Part A Source
Deploy the project AirAlliance_SA. In the AirAlliance_CA project, under Test |
TestReservation, edit input.xml with some values. In the AirAlliance_CA project,
execute the TestReservation test case under the Test folder. The output.xml under
Test | TestReservation should be similar to the following output:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
 "http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/
 http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <someNS:processItineraryResponse xmlns:someNS=
 "http://northair.airalliance.org/">
 <return xmlns:msgns="http://northair.airalliance.org/"
 xmlns:ns2=
 "http://northair.airalliance.org/" xmlns="">Processed
 Reservation</return>
 </someNS:processItineraryResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Building a Sample Application

[230]

The TestReservation test case has been created for you. To create a test case,
right-click and select AirAlliance_CA | Test | New Test Case. Provide a valid
name for the Test Case and select the ProcessItinerary.wsdl document. That web
service is the entry point to our BPEL process.

After selecting the web service, select the operation of the Web Service that we
would like to test. In our case we have only one operation.

Chapter 10

[231]

The first time you execute the test case; the test will fail as output.xml
does not exist. Subsequent executions produce the response back from the
NorthAir web service.

Part B – Using Multiple Partners
In the previous part of the example, there was only one partner service (NorthAir)
that processed the itinerary requests. In this part, we will build another partner
service SouthAir that can also process the request. But SouthAir is not a web service
and our business process does not invoke any of SouthAir's web service. Instead,
SouthAir DB is directly updated through JDBC binding component.

So whenever a request for reservation is made, the NorthAir web service is invoked
and the itinerary data is updated in the SouthAir DB through the JDBC BC. This
example shows you how you can use other binding components to perform non-
web service calls. This is because all partner systems do not need to be based on web
services. Part B source shows how you can use the JDBC BC to update Java DB from
the BPEL process.

First, we will create the DB for SouthAir. While you can use any DB, this example
shows how you can use Java DB that is well integrated with the NetBeans IDE. From
the IDE, select Tools | Java Database | Create Database. Enter SouthAirDB as the
Database Name and provide User Name and Password.

If you are using the DB provided in the source code folder, set the correct
path to the DB in Database Location field.

Building a Sample Application

[232]

After creating the database, connect to the database by right-clicking on the
Databases under the Services tab and selecting Connect as shown in the figure:

Now that our database is ready, right-click on Tables and select Create Table. The
following figure shows the SouthAir database structure. This is just an example
database structure. Real databases may not look like this.

We will have some fields that match with the itinerary information that NorthAir
Web Service expects.

Now SouthAirDB is ready with one table called Itinerary that the Reservation BPEL
process updates. Unfortunately, SouthAir does not have a Web Service for our
business process to interact with. So, we will create a web service that can perform
the CRUD operation on SouthAir DB whenever a reservation request is made.

Chapter 10

[233]

NetBeans provides a wizard to create a web service from a database table. The
generated web service can perform the CRUD operation on the selected table. For
this, right-click on ReservationBPEL project and select New | Other from the menu.
In the New File wizard page, select WSDL From Database option as shown in the
following screenshot:

Enter the name of the WSDL.

Building a Sample Application

[234]

Select the Data Source for the wizard to connect to and retrieve the tables. Make sure
that Java DB is running and you see the ITINERARY table. Add the table to Selected
Tables list and click Next.

You have the option of selecting individual columns to update. Since ours is a
sample, we will select all the columns to be updated.

Chapter 10

[235]

The next page will ask you about JNDI Name for a connection pooling that are
configured to provide connections for the same database that you selected in the
previous step. Type jdbc/southair as JNDI Name, we will configure jdbc/southair
data source and the connection pooling later.

After completing the wizard, ITINERARY.xsd and Itinerary_SA.wsdl files are
created automatically under ReservationBPEL project. The following is the code for
ITINERARY.xsd:

<?xml version="1.0" encoding="UTF-8"?>
 <xsd:schema elementFormDefault="qualified" targetNamespace=
 "http://j2ee.netbeans.org/xsd/tableSchema"
 xmlns="http://j2ee.netbeans.org/xsd/tableSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="ITINERARY" type="ITINERARY">
 </xsd:element>
 <xsd:complexType name="ITINERARY">
 <xsd:sequence maxOccurs="unbounded">
 <xsd:element name="SEQID" type="xsd:decimal"></xsd:element>
 <xsd:element name="FIRSTNAME" type="xsd:string"></xsd:element>
 <xsd:element name="FOODPREFERENCE" type=
 "xsd:string"></xsd:element>
 <xsd:element name="SOURCE" type="xsd:string"></xsd:element>
 <xsd:element name="GUESTID" type="xsd:string"></xsd:element>

Building a Sample Application

[236]

 <xsd:element name="SEATPREFERENCE" type=
 "xsd:string"></xsd:element>
 <xsd:element name="DESTINATION" type=
 "xsd:string"></xsd:element>
 <xsd:element name="TRAVELDATE" type=
 "xsd:string"></xsd:element>
 <xsd:element name="LASTNAME" type="xsd:string"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>

Note that our itinerary table structure is grabbed in the schema. Now, we have a
wrapper web service to update SouthAir database, but we still have not configured
the JDBC resource. To create application server resources open Services window
in IDE and expand Servers node and look for a green arrow near GlassFish server.
If the green arrow is there, it means that your server is started, otherwise start the
server by using the pop-up menu. After starting the server right-click on it and
select View Admin Console. Login with your Username and Password (admin/
adminadmin by default) then from the left side navigation tree select Resources|
JDBC| Connection Pools. When the connection pooling page is opened, click on the
New button and fill in information as shown in the screenshot:

You need to add Additional Properties to the Connection Pool. Click on the
Additional Properties tab and update the properties as shown in the screenshot. You
can remove all the other properties from the table.

Chapter 10

[237]

Now, we have a Connection Pool ready to be used. Before we can use the pool,
we need to define a JNDI entry for it. We know JNDI entry for connection pooling
as data source. To define a data source for SouthAir, from the left tree navigate to
Resources | JDBC | JDBC Resources. Click on the New button and enter JNDI
Name as jdbc/southair and select the Pool Name.

Building a Sample Application

[238]

Restart the application server. Now, drag-and-drop Itinerary_SA.wsdl on top of
the BPEL diagram. In the Partner Link property dialog box, enter UpdateSA_DB as
the partner link name. Now, look at the following business process:

After invoking NorthAir Web Service, the itinerary information is updated in
SouthAir DB through the wrapper partner service that we have created. Check out
the ReservationBP.bpel source code in the Part B folder. For help on adding BPEL
activities like Invoke, Reply, or Assign refer to the first section of this chapter and
Chapter 5 on BPEL Designer.

Chapter 10

[239]

From the Source Code – Part B folder
Open NorthAirEJB, ReservationBPEL and AirAlliance_CA NetBeans
project files and go through the code. When you open them for the first
time, you will get a 'Resolve References' warning. You may need to set
the correct target server for the EJB module and set the correct path to
the ReservationBPEL jar file for the composite application. Also note
ProcessReservation.wsdl. This wsdl is the web service that initiates
the BPEL process. If you are making changes to the ReservationBP.
bpel file in ReservationBPEL project. If you are making changes, then
you need to update the JBI module again in this project. Right-click this
project and choose Edit Application Configuration.
You can see three WSDL ports are configured. Two ports use SOAP
bindings and one port uses JDBC binding.

In NetBeans, drill down to Services | Servers | Glassfish V[x] | JBI |Binding
Components. If you do not see sun-jdbc-binding, download the jar from:

http://download.java.net/jbi/binaries/open-jbi-components/main/
nightly/latest/ojc/

Then, right-click on Services | Servers | Glassfish V[x] | JBI |Binding
Components and choose Install New Binding Components and select the BC jar
that you downloaded from the above link.

Testing Part B Source
Deploy the project AirAlliance_CA. In the AirAlliance_CA project, under
Test | TestReservation, edit input.xml with some values. In the AirAlliance_CA
project, execute the TestReservation test case under Test folder

Now, check the Itinerary table of the SouthAirDB. Look how the DB is updated.
Also check the output.xml file for the confirmation message from the NorthAir
web service.

This part introduced you to JDBC BC and showed how a BPEL process can invoke
multiple web services as part of a single scope.

Building a Sample Application

[240]

Part C – Writing to File
This part shows how you can use the File BC to store itinerary data in the file system.
Whenever a request for reservation is made, the NorthAir web service is invoked
and the itinerary data is updated in the SouthAir database. Also the itinerary
information is updated in the file system using JBI file binding component. This file
can be constantly monitored by an external process or an intelligent event processor
shown in the later example.

File BC is a JBI BC that provides message processing capabilities over the Network
File System (NFS). This component is designed to send and receive XML or text
messages to or from the locally available file system. These functionalities also map
to the roles file binding components play in a JBI environment—service provider and
consumer, respectively. For instance, a file binding component can act as a service
consumer by receiving itinerary data for logging purpose. It can also act as
a service producer by providing inputs to a business process. File BC includes
design-time and run-time components. The design-time component defines the set
of WSDL extensions for file binding and artifacts that allow the extensions to be
plugged into the NetBeans tooling system. The run-time component includes all
necessary implementations and artifacts required by a JBI component.

Chapter 10

[241]

File BC provides a set of WSDL extensions to allow a service to be bound to a file
transport and thus, allows the messages to be processed by File BC. You need
to download and install File BC, if you do not have it. Download File BC from
https://open-esb.dev.java.net/Components.html.

Now, let us create a WSDL document with file binding and configure file system
related properties. Create a New WSDL Document.

Building a Sample Application

[242]

Make sure that you select a One-way Operation, as our BPEL process just wants to
write guest itinerary information to a file and will not read from any file. In the input
type, select the ITINERARY schema.

In the next screen you will need to select File binding as the type of binding. By
default, the binding type will be SOAP. Now that your StoreItinerary.wsdl is
ready, you need to make some changes to the WSDL as shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="StoreItinerary" targetNamespace=
 "http://j2ee.netbeans.org/wsdl/StoreItinerary"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns:tns="http://j2ee.netbeans.org/wsdl/StoreItinerary"
 xmlns:ns="http://j2ee.netbeans.org/xsd/tableSchema"
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
 xmlns:file="http://schemas.sun.com/jbi/wsdl-extensions/file/">
 <types>
 <xsd:schema targetNamespace=
 "http://j2ee.netbeans.org/wsdl/StoreItinerary">

Chapter 10

[243]

 <xsd:import namespace=
 "http://j2ee.netbeans.org/xsd/tableSchema"
 schemaLocation="ITINERARY.xsd"/>
 </xsd:schema>
 </types>
 <message name="StoreItineraryOperationRequest">
 <part name="inputItinerary" element="ns:ITINERARY"/>
 </message>
 <portType name="StoreItineraryPortType">
 <operation name="StoreItineraryOperation">
 <input name="input1" message=
 "tns:StoreItineraryOperationRequest"/>
 </operation>
 </portType>
 <binding name="StoreItineraryBinding" type=
 "tns:StoreItineraryPortType">
 <file:binding/>
 <operation name="StoreItineraryOperation">
 <file:operation/>
 <input name="input1">
 <file:message use="literal" fileName="GuestItinerary.xml"
 pollingInterval="1000" fileType="text" addEOL="true"
 multipleRecordsPerFile="true" recordDelimiter="\r\n"/>
 </input>
 </operation>
 </binding>
 <service name="StoreItineraryService">
 <port name="StoreItineraryPort" binding=
 "tns:StoreItineraryBinding">
 <file:address fileDirectory="/aademo_store"
 lockName="filebc.lck"
 workArea="filebc_tmp" seqName="filebc.seq"/>
 </port>
 </service>
 <plnk:partnerLinkType name="StoreItinerary1">
 <plnk:role name="StoreItineraryPortTypeRole"
 portType="tns:StoreItineraryPortType"/>
 </plnk:partnerLinkType>
</definitions>

Building a Sample Application

[244]

Note that we have made changes to the WSDL specifying file name and directory
information. Make sure that you have write permission to the directory specified. In
our example, we need to have write permission to the /aademo_store directory.
Now, drag-and-drop StorItinerary.wsdl into your BPEL diagram to create a
Partner Link.

In the Partner Link - Property Editor, make sure that the Partner Role is
StoreItineraryPortTypeRole. If My Role shows as StoreItineraryPortTypeRole,
click the Swap Roles button. This is because the partner or the binding component
takes care of storing itinerary and not the BPEL process.

Chapter 10

[245]

Now take a look at our BPEL process:

Building a Sample Application

[246]

It is one sequential synchronous BPEL process. Build the BPEL module and deploy
to a composite application as explained in the first section of this chapter. Now, our
composite application looks like this with one additional FILE WSDL port:

From the Source Code – Part C folder
Open NorthAirEJB, ReservationBPEL and AirAlliance_CA NetBeans
project files and go through the code. When you open them for the first
time, you will get a 'Resolve References' warning. You may need to set
the correct target server for the EJB module and set the correct path to
the ReservationBPEL jar file for the composite application. Also note
ProcessReservation.wsdl. This wsdl is the web service that initiates
the BPEL process. If you are making changes to the ReservationBP.
bpel file in ReservationBPEL project, then you need to update the JBI
module again in this project. Right-click this project and choose Edit
Application Configuration.
You can see four WSDL ports are configured. Two ports use SOAP
bindings, one port uses JDBC binding and one port uses File binding.

Chapter 10

[247]

In NetBeans, drill down to Services | Servers | Glassfish V[x] | JBI |Binding
Components. If you do not see sun-file-binding, download the jar from:

http://download.java.net/jbi/binaries/open-jbi-components/main/
nightly/latest/ojc/

Then right-click on Services | Servers | Glassfish V[x] | JBI |Binding Components
and choose Install New Binding Components and select the binding component jar
that you downloaded from the above link.

Testing Part C Source
Deploy the project AirAlliance_CA. In the AirAlliance_CA project, under
Test | TestReservation, edit input.xml with some values. In the AirAlliance_CA
project, execute the TestReservation test case under the Test folder.

Now, check the Itinerary table of SouthAirDB. Look how the DB is updated. Also
check the output.xml file for the confirmation message from NorthAir web service.
Additionally, check if the guest information is written to the file specified in the
StoreItinerary.wsdl file.

Part D – Sending JMS Messages
So far, the BPEL process interacted with two different partner systems. The first
system was an EJB, deployed as a web service. The second system was a wrapper
service that performed CRUD operations on a partner DB. This part of the example
shows how the BPEL process sends messages to EastAir's JMS Queue. The BPEL
process sends Itinerary data to EastAir's JMS Queue. EastAir's JMS Queue Listener
can get the itinerary information for further processing.

In the same way we created StoreItinerary.wsdl, create another WSDL file called
SendItinerary.wsdl of type JMS binding. Make changes to the WSDL in order to
specify connection information. Consider the following code:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="SendItinerary"
 targetNamespace="http://j2ee.netbeans.org/wsdl/SendItinerary"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://j2ee.netbeans.org/wsdl/SendItinerary"
 xmlns:ns="http://j2ee.netbeans.org/xsd/tableSchema"
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
 xmlns:jms="http://schemas.sun.com/jbi/wsdl-extensions/jms/">

Building a Sample Application

[248]

 <types>
 <xsd:schema targetNamespace=
 "http://j2ee.netbeans.org/wsdl/SendItinerary">
 <xsd:import namespace=
 "http://j2ee.netbeans.org/xsd/tableSchema"
 schemaLocation="ITINERARY.xsd"/>
 </xsd:schema>
 </types>
 <message name="SendItineraryOperationRequest">
 <part name="inputItinerary" element="ns:ITINERARY"/>
 </message>
 <portType name="SendItineraryPortType">
 <operation name="SendItineraryOperation">
 <input name="input1" message=
 "tns:SendItineraryOperationRequest"/>
 </operation>
 </portType>
 <binding name="SendItineraryBinding" type=
 "tns:SendItineraryPortType">
 <jms:binding/>
 <operation name="SendItineraryOperation">
 <jms:operation destination=
 "EastAirQueue" destinationType="Queue"/>
 <input name="input1">
 <jms:message messageType=
 "TextMessage" textPart="inputItinerary"/>
 </input>
 </operation>
 </binding>
 <service name="SendItineraryService">
 <port name="SendItineraryPort" binding=
 "tns:SendItineraryBinding">
 <jms:address connectionURL=
 "mq://localhost:7676" username="admin"
 password="admin"/>
 </port>
 </service>
 <plnk:partnerLinkType name="SendItinerary1">
 <plnk:role name="SendItineraryPortTypeRole"
 portType="tns:SendItineraryPortType"/>
 </plnk:partnerLinkType>
</definitions>

Chapter 10

[249]

For JMS Destination, we have mentioned the EastAirQueue. For the purpose of this
demo, do not worry if the Queue does not exist. It will be automatically created. Just
make sure GlassFish Application Server is running. Look at our new BPEL process:

Building a Sample Application

[250]

Configure the invoke activity of SendItinerary by double clicking on it. Create the
variables as described in the previous section. While configuring the partner link,
make sure that you click Swap Roles for the one way WSDL operation as shown
in the earlier part. Build the BPEL module and add it to a composite application as
described in the first section of this chapter. Our composite application now has five
WSDL ports with an additional JMS port.

From the Source Code – Part D folder
Open NorthAirEJB, ReservationBPEL, and AirAlliance_CA NetBeans
project files and go through the code. When you open them for the first
time, you will get a 'Resolve References' warning. You may need to set
the correct target server for the EJB module and set the correct path to
the ReservationBPEL jar file for the composite application. Also note
ProcessReservation.wsdl. This wsdl is the web service that initiates
the BPEL process. If you are making changes to the ReservationBP.
bpel file in ReservationBPEL project, then you need to update the JBI
module again in this project. Right-click this project and choose Edit
Application Configuration.
You can see five WSDL ports are configured. Two ports use SOAP
bindings and one port uses JDBC binding, one port uses File binding and
one port uses JMS binding.

Chapter 10

[251]

In NetBeans, drill down to Services | Servers | Glassfish V[x] | JBI |Binding
Components. If you do not see sun-jms-binding, download the jar from:

http://download.java.net/jbi/binaries/open-jbi-components/main/
nightly/latest/ojc/

Then right-click on Services | Servers | Glassfish V[x] | JBI |Binding Components
and choose Install New Binding Components and select the binding component jar
that you downloaded from the above link.

Testing Part D Source
Deploy the project AirAlliance_CA. In the AirAlliance_CA project, under
Test | TestReservation, edit Input.xml with some values. In the AirAlliance_CA
project, execute the TestReservation test case under the Test folder

Now, check the Itinerary table of the SouthAirDB. Look how the DB is updated. Also
check the Output.xml file for the confirmation message from NorthAir Web Service.
Check if the guest information is written to the file specified in StoreItinerary.
wsdl. Now, go to the Admin Console of GlassFish Application Server and drill
down to Configuration | Java Message Service | Physical Destinations. Check if
EastAirQueue Destination is added.

Building a Sample Application

[252]

All this is achieved through JMS BC. In case of outbound message flow, where the
JMS BC is being invoked by our business process, the JMS BC acts as an external
JMS service provider. In this role, the JMS BC converts a normalized message that it
receives as part of the message exchange from our process, to a JMS message. After
the JMS message is created as a result of the message conversion, the JMS message is
sent to JMS destination.

The above screenshot shows the NetBeans output when the BPEL process is
executed. The NMR message is converted into a valid JMS to send to the queue.

Part E – Conditions and Sequence
This part introduces the sequencing and branching properties of BPEL. When a
request for a reservation is made, the BPEL process checks the destination sector.
If the destination is set to 'SFO', then the itinerary is routed to NorthAirWS,
otherwise the itinerary is sent to WestAir Web Service. Since WestAir Web Service
is new, we create an identical web service using NorthAir Web Service and name it
WestAir Web Service. They do not do any actual itinerary processing but they send
a confirmation message back to the client so we can find out which airlines' web
service was invoked.

So far through the earlier parts of this example, we have created a sequential process
to invoke NorthAir Web Service. This process consists of storing and sending
itineraries to a JMS physical destination. Ideally, updating the partner airlines
repository is independent of itinerary processing. Despite of failed reservations, we
update the data store for the purpose of a waiting list (Of course without a confirmed
reservation ID).

UpdateItinerary sequence is introduced as a flow branch to process itinerary
branch, so both the sequences work in parallel. This part also shows how as part of
the UpdateAirlines sequence, we send the itinerary information to a travel agent's
FTP Server. Uploading itinerary information to an FTP server is done through an
FTP binding component.

Chapter 10

[253]

Whenever a request for reservation is made, the NorthAir Web Service is invoked
and the itinerary data is updated in the SouthAir database. Also, the itinerary
information is updated in the file system using the JBI file binding component. This
file can be constantly monitored by an external process. Now the itinerary data is
sent to EastAir's JMS Queue. EastAir's JMS Queue Listener can get the itinerary
information for further processing. The BPEL process also uploads the guest itinerary
to a remote FTP server of a travel agent or any AirAlliance partner.

Let us create another web service WestAir_WS just like we created NorthAir_WS.
Create an EJB module and create a web service from that module. Drag-and-drop
WestAir_WS on the BPEL diagram to create the partner link.

Building a Sample Application

[254]

To make our example simple, let us have the same web service operation as
NorthAir Web Service.

Chapter 10

[255]

Add an If activity to the BPEL diagram and set a condition as shown in the following
screenshot. In our case, the condition returns true if the destination sector matches
'SFO'. If you are comfortable using the BPEL mapper add Equal operator as shown.
For information on using BPEL Mapper, refer to Chapter 5 on BPEL Designer.

Or you can manually set the condition as shown in the following screenshot:

Building a Sample Application

[256]

Drag-and-drop Invoke calls of both NorthAir Web Service and WestAir Web Service
into the appropriate branches as shown in the following figure.

Chapter 10

[257]

So, whenever the guest itinerary has its destination sector as 'SFO', NorthAir WS
is invoked. Otherwise WestAir WS is invoked. Now, updating the SouthAir DB,
storing the itinerary and sending a JMS message can happen in flow with the sector
check. So, add a BPEL flow activity and drag-and-drop InvokeSA, StoreInFile, and
SendItinerary invoke blocks to the secondary branch of the flow. Drag-and-drop
the check sector block to the primary branch of the flow. Now, irrespective of who
processes the request, all partner systems are updated.

Building a Sample Application

[258]

In the secondary flow branch, let us add one more invoke call that uploads the guest
itinerary to a partner FTP server for further processing. For this you need to create
one more WSDL file of name UploadItinerary.wsdl. Follow the same steps you
have learnt for creating SendItinerary.wsdl but select FTP binding as the binding
type. Now let us take a look at UploadItinerary.wsdl:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="UploadItinerary" targetNamespace=
 "http://j2ee.netbeans.org/wsdl/UploadItinerary"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://j2ee.netbeans.org/wsdl/UploadItinerary"
 xmlns:ns="http://j2ee.netbeans.org/xsd/tableSchema"
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
 xmlns:ftp="http://schemas.sun.com/jbi/wsdl-extensions/ftp/">
 <types>
 <xsd:schema targetNamespace=
 "http://j2ee.netbeans.org/wsdl/UploadItinerary">
 <xsd:import namespace=
 "http://j2ee.netbeans.org/xsd/tableSchema"
 schemaLocation="ITINERARY.xsd"/>
 </xsd:schema>
 </types>
 <message name="UploadItineraryOperationRequest">
 <part name="inputItinerary" element="ns:ITINERARY"/>
 </message>
 <portType name="UploadItineraryPortType">
 <operation name="UploadItineraryOperation">
 <input name="input1" message=
 "tns:UploadItineraryOperationRequest"/>
 </operation>
 </portType>
 <binding name="UploadItineraryBinding" type=
 "tns:UploadItineraryPortType">
 <ftp:binding/>
 <operation name="UploadItineraryOperation">
 <ftp:operation/>
 <input name="input1">
 <ftp:message messageName="" messageNamePrefixIB=""
 messageNamePrefixOB=
 "" pollIntervalMillis="5000" archive="true"
 protect="true" stage="true" use="literal"
 encodingStyle="" messageCorrelate="true"
 messageRepository="itinerary"/>
 </input>
 </operation>
 </binding>
 <service name="UploadItineraryService">

Chapter 10

[259]

 <port name="UploadItineraryPort" binding=
 "tns:UploadItineraryBinding">
 <ftp:address url=
 "ftp://userftp:userftp@localhost:21" dirListStyle="UNIX"
 useUserDefinedHeuristics="false" userDefDirListStyle=""
 userDefDirListHeuristics="" cmdChannelTimeout="45000"
 dataChannelTimeout="45000"/>
 </port>
 </service>
 <plnk:partnerLinkType name="UploadItinerary1">
 <plnk:role name="UploadItineraryPortTypeRole"
 portType="tns:UploadItineraryPortType"/>
 </plnk:partnerLinkType>
</definitions>

As usual make changes to the binding and service parts of the WSDL document to
provide your FTP server information. If you want to run this sample, set up an FTP
server or provide a URL to an existing FTP server.

Now, drag-and-drop UploadItinerary.wsdl on BPEL diagram to create a partner
link. Just as explained in the previous sections, swap roles if necessary.

Now our BPEL process diagram looks like this:

Building a Sample Application

[260]

Now our composite application looks like the following figure. Note that the FTP
WSDL port is highlighted.

Chapter 10

[261]

From the Source Code – Part E folder
Open NorthAirEJB, WestAirEJB, ReservationBPEL and AirAlliance_CA
NetBeans project files and go through the code. When you open them
for the first time, you will get a 'Resolve References' warning. You may
need to set the correct target server for the EJB module and set the correct
path to the ReservationBPEL jar file for the composite application. Also
note ProcessReservation.wsdl. This WSDL is the web service
that initiates the BPEL process. If you are making changes to the
ReservationBP.bpel file in ReservationBPEL project, then you need
to update the JBI module again in this project. Right-click this project and
choose Edit Application Configuration.
You can see seven WSDL ports are configured. Three ports use SOAP
bindings, one port uses JDBC binding, one port uses File binding, one
port uses JMS binding and one port uses FTP binding.

In NetBeans, drill down to Services | Servers | Glassfish V[x] | JBI |Binding
Components. If you do not see sun-ftp-binding, download the jar from:

http://download.java.net/jbi/binaries/open-jbi-components/main/
nightly/latest/ojc/

Then right-click on Services | Servers | Glassfish V[x] | JBI |Binding Components
and choose Install New Binding Components and select the binding component jar
that you downloaded from the above link.

Testing Part E Source
Deploy the project AirAlliance_CA. In the AirAlliance_CA project, under
Test | TestReservation, edit input.xml with some values. In the AirAlliance_CA
project, execute the TestReservation test case under the Test folder

Building a Sample Application

[262]

Now, check the Itinerary table of SouthAirDB. Look how the DB is updated. Also,
check the output.xml file for the confirmation message from NorthAir web service.
Check if the guest information is written to the file specified in StoreItinerary.
wsdl file. Now, go to the Admin Console of GlassFish Application Server and drill
down to Configuration | Java Message Service | Physical Destinations. Check
if EastAirQueue Destination is added. Additionally, check if the guest itinerary is
uploaded to the FTP server.

Part F – Sending Mails
The reservation process is updated to perform pre-processing before invoking the
partner services. This will be useful later to build your own validation rules before
invoking the partner services. AAPreProcessor Web Service performs a check on
the sectors and sends a reply back to the process stating if the reservation could be
processed. For this example, all reservation requests from 'BLR' to "SFO' are rejected
and auto responder is sent to a predefined e-mail address.

The pre-processing also includes checking if the source and destination sectors are
same before invoking the expensive partner services query operations. You should
have more of these checks in your real applications.

Chapter 10

[263]

For this purpose, we create another web service AAPreProcessor Web Service that
performs the check. Create an EJB module AAPreProcessor_EJB and create a web
service with just one operation. See the following code:

@WebMethod(operationName = "areSectorsAvailable")
 public boolean areSectorsAvailable(@WebParam(name = "source")
 String source, @WebParam(name = "destination")
 String destination)
 {
 if(source.equals("BLR") && destination.equals("SFO")){
 return false;
 }
 return true;
 }

It returns true if a particular source-destination condition is met.

The pre-processor sets a variable AreSectorsAvailableOut if the sectors are not
available. Add an If activity with the following condition:

($AreSectorsAvailableOut.parameters/return = false())

Based on the above condition, we send auto notification mail. For this you need to
install SMTP binding component.

Create MailResponder.wsdl file just like you created StoreItinerary.wsdl but
select the binding type as SMTP. Now, make changes to StoreItinerary.wsdl to
add SMTP server related information shown as follows:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="MailResponder" targetNamespace=
 "http://j2ee.netbeans.org/wsdl/MailResponder"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://j2ee.netbeans.org/wsdl/MailResponder"
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
 xmlns:smtp="http://schemas.sun.com/jbi/wsdl-extensions/smtp/">
 <types/>
 <message name="MailResponderOperationRequest">
 <part name="bodyPart" type="xsd:string"/>
 <part name="fromPart" type="xsd:string"/>
 <part name="subjectPart" type="xsd:string"/>
 </message>
 <portType name="MailResponderPortType">
 <operation name="MailResponderOperation">
 <input name="input1" message=
 "tns:MailResponderOperationRequest"/>
 </operation>
 </portType>

Building a Sample Application

[264]

 <binding name="MailResponderBinding" type=
 "tns:MailResponderPortType">
 <smtp:binding/>
 <operation name="MailResponderOperation">
 <smtp:operation/>
 <input name="input1">
 <smtp:input message="bodyPart" subject="subjectPart"
 from="fromPart"/>
 </input>
 </operation>
 </binding>
 <service name="MailResponderService">
 <port name="MailResponderPort" binding="tns:MailResponderBinding">
 <smtp:address location="mailto:frank@jennings.in"
 smtpserver="jennings.in" useSSL="false"
 username="frank@jennings.in"
 password="************"/>
 </port>
 </service>
 <plnk:partnerLinkType name="MailResponder1">
 <plnk:role name="MailResponderPortTypeRole"
 portType="tns:MailResponderPortType"/>
 </plnk:partnerLinkType>
</definitions>

After creating the WSDL document, drag-and-drop MailResponder.wsdl on
your BPEL diagram to create the partner link. This is how your BPEL diagram will
look now:

Chapter 10

[265]

Now, if you check our sample composite application, it will look like the
following figure:

Building a Sample Application

[266]

From the Source Code – Part F folder
Open NorthAirEJB, WestAirEJB, AAPreProcessorEJB, ReservationBPEL
and AirAlliance_CA NetBeans project files and go through the code.
When you open them for the first time, you will get a 'Resolve References'
warning. You may need to set the correct target server for the EJB module
and set the correct path to the ReservationBPEL jar file for the composite
application. Also note ProcessReservation.wsdl. This WSDL is the
web service that initiates the BPEL process. If you are making changes
to the ReservationBP.bpel file in ReservationBPEL project, then
you need to update the JBI module again in this project. Right-click this
project and choose Edit Application Configuration.
You can see nine WSDL ports are configured. four ports use SOAP
bindings, one port uses JDBC binding, one port uses File binding, one
port uses JMS binding, one port uses FTP binding and one port uses
SMTP binding.

In NetBeans, drill down to Services | Servers | Glassfish V[x] | JBI |Binding
Components. If you do not see sun-smtp-binding, download the jar from:

http://download.java.net/jbi/binaries/open-jbi-components/main/
nightly/latest/ojc/

Then right-click on Services | Servers | Glassfish V[x] | JBI |Binding Components
and choose Install New Binding Components and select the binding jar that you
downloaded from the above link.

Testing Part F Source
Deploy project the AirAlliance_CA. In the AirAlliance_CA project, under Test |
TestReservation, edit input.xml with some values. In the AirAlliance_CA project,
execute the TestReservation test case under the Test folder

Now check the Itinerary table of SouthAirDB. Look how the DB is updated. Also
check the output.xml file for the confirmation message from NorthAir Web Service.
Check if the guest information is written to the file specified in StoreItinerary.
wsdl. Now go to the Admin Console of GlassFish Application Server and drill
down to Configuration | Java Message Service | Physical Destinations. Check
if EastAirQueue Destination is added. Additionally check if the guest itinerary is
uploaded to the FTP server.

Chapter 10

[267]

If you enter the source as 'BLR' in input.xml and destination as 'SFO',
then the process fails to proceed and mail will be sent to a configured
Email address. Also if you have the same values for source and
destination, the process stops processing the itinerary. Check if you get
the reservation confirmation from NorthAir WS and if the destination is
'SFO'. If the destination is not 'SFO' the reservation confirmation comes
from WestAir WS.

The above example shows how notification messages can be sent to partners
through SMTP BC.

Part G – Event Processing
This part shows you how you can process your data stream to do some intelligent
pre-processing before performing any meaningful action on the data. In the previous
parts, you used a File BC to create an XML file that contained the itinerary data.

This itinerary data can be converted into a stream and can be passed through
Intelligent Event Processors to project or filter the stream or to restrict the itinerary
count. This part contains one intelligent event processor that does the following:

1. Processes all itineraries obtained from the stream for the last 3 seconds.
2. Uses the stream filter to remove itinerary preferences data to make the

itinerary data set smaller.
3. Contiguous ordering of itinerary data.
4. Stores the filtered itinerary record in database.

Building a Sample Application

[268]

Make sure that you have started the IEP service engine. Refer to the chapter on IEP
for more information.

For this example, we will be creating an IEP NetBeans module and a single
event processor.

From the Source Code – Part E folder
ItineraryIEP - Intelligent Event Processor NetBeans Project that contains 1
event processor by name ItineraryProcessorIEP.iep.
AirAlliance_CA – Composite application that deploys the IEP module.
TestItineraryIEP – NetBeans standalone Java application to test the
event processor.

On your IEP workspace, drag-and-drop the following operators and connect
them sequentially.

1. Stream Input (Input Operator)
2. Time Based Window (Stream Converter)
3. Insert Stream (Relation Converter)
4. Stream Projection and Filter (Correlation and Filter)
5. Contiguous Order (Sequence Operator)
6. Partitioned Window (Stream Converter)
7. Table Output (Table Operator)

Chapter 10

[269]

The following figure shows how they are connected sequentially.

Configure the IEP to read guest itinerary information from the input stream. Specify
the itinerary fields as attributes in the Stream Input Property Editor.

Building a Sample Application

[270]

Now, we will let the IEP process only the itineraries received for the last three
seconds in the stream. Double-click the Time Based Window Property Editor and
specify the Size as 3 and select second from the drop-down box. Note that since you
have already connected the operators, the Attributes are automatically populated
from the input stream.

Now, if you notice the stream that we are processing also includes guest preferences
like Food and Seat preference. If for some reason we want to ignore the preferences
and process only the core itinerary attributes, we need to ignore these preferences.
For this, we will be using the Stream Projection and Filter operator. Double-click
the Stream Projection and Filter Property Editor and add all the attributes except
FoodPreference and SeatPreference.

Chapter 10

[271]

Now, we pass the stream to the Contiguous order operator to sort the stream based
on the SeqID.

Building a Sample Application

[272]

Open the Contiguous Order Property Editor and select SeqID as the Sort by id.

Despite of the time based filtering we did earlier, there could be several itinerary
records that you may need to control processing. We can set it to process only the last
four records of the itinerary using a Partitioned Window. Double-click Partitioned
Window Property Editor and set the Size to 4. Note that the preferences attributes
will be missing from the list.

Chapter 10

[273]

Now that our IEP is ready, we use the Table Output operator to write to a table.
Double-click the Table Output Property Editor and select Is Global and give a
Global ID name as CurrentItinerary.

When you deploy this IEP, the IEP service engine will create a table by name
CURRENTITINERARY as specified by the Global ID.

Building a Sample Application

[274]

Create a composite application and add the IEP project as a JBI module and
deploy the project to the GlassFish Server. At the time of deployment, the
CURRENTITINERARY table will be created. Now to test the IEP, you need to
generate a stream and pass it to the IEP. For this purpose use the TestItineraryIEP
standalone java project. It reads the itinerary information stored in the file by the BPEL
process and creates a stream and sends it to the IEP. After running the test application
check the CURRENTITINERARY table to check the filtered itinerary output.

The idea of this part of the example is to show how you can create a very simple
event processor that could be deployed as a composite application and works along
with a BPEL process into intelligently process a stream of data.

Summary
This chapter showed you how you can use the NetBeans SOA tools and OpenESB
components to create simple and powerful BPEL processes, all visually through
wizards and property editors. Various parts of this sample showed you how to work
each of the binding components and introduced branching and flow in business
processes. The last part of the example showed the usage of intelligent event
processors to filter and process the stream based on application preferences.

You can use these techniques and tools to build a scalable business using BPEL as the
orchestration point.

Composite Applications
Whenever you need to deploy your BPEL process or IEP module, you have to deploy
them through a service assembly or a composite application.

A composite application is a service congregation consisting of business functionality
and information from disparate information sources. Composite applications are
both a form of integration, as well as application development. Typically, they are
created to support a company's business processes and map them to underlying
information resources.

If you have done any business integration, you will be well aware that integration is
a longtime messy issue for IT organizations and is the potential candidate for Web
services and SOA. Composite applications are conceived as the end product for SOA.
The majority of the benefits of SOA are realized when you assemble existing services
into composite applications.

Role of Composite Applications
Web services uphold syntax and protocol-level communications but do not provide
a way to ensure semantic interoperability. Consider, for example, how a passenger
entity is defined in a system based on SAP and how a passenger entity is defined
in a system based on Siebel. It could be very different. So who resolves the data
disparities between these two different systems to make a meaningful business
process? A composite application does that.

How does a composite application extend SOA? SOA recommends building loosely
coupled applications and treating each one of them as independent 'service units'.
Well-designed composite applications implement this architectural approach by
providing an easy way to build business applications. They also provide integration
of existing applications with other existing, as well as new applications. This SOA
concept of linking together business processes is the hub of composite applications.

Composite Applications

[276]

What essentially is a composite application?

1. A composite application is typically an application built by combining
multiple services.

2. Functionality of a composite application varies based on the
individual components.

In essence, a composite application is just an exposing platform for various
web services.

There are many tools available today that let you create composite applications. Out
of these, NetBeans SOA tools and OpenESB runtime offer an elegant and intuitive
way of creating and editing composite applications.

NetBeans Project Types
NetBeans supports creating composite applications through the Composite
Application project type. The composite application project is an Ant-based
NetBeans project system. It allows users to create instances of composite application
projects within the NetBeans IDE. Each composite application project instance is a
container holding the deployment configuration for a collection of JBI component
subprojects like BPEL, XSLT, and Java EE projects. The project system allows the
user to create a Service Assembly (SA) artifact that contains all subprojects as Service
Units (SUs). The SA can then be deployed to the JBI runtime on an Application
Server like GlassFish Application Server or Sun Java System Application Server.

The following figure shows how you can use NetBeans' tools to create and edit
composite applications:

First, you create a composite application and then add JBI modules to the
composite application. When you build the project, Composite Application Service
Assembly (CASA) file will be created. You can use the CASA Editor tool to edit the
composite application configuration by adding WSDL ports, adding connections,
and editing properties.

Chapter 11

[277]

The main objective of the composite application project system is to provide a
deployment container for various types of JBI component projects. It provides
support for users to selectively include JBI component projects and deployment data.
This allows one to reuse JBI component projects for different deployment scenarios.
The project system provides support; allowing the user to customize the deployment
configuration for different usage scenarios. This service is provided by tools that
allow you to add or modify deployment specific data within a composite application
project, so that JBI component projects can be designed to be more generic and
reusable in multiple deployment scenarios.

Workspace
The CASA Workspace is a very intuitive environment. I have used many
composite application editors that are not as easy to use as the workspace provided
by NetBeans. The following figure shows the conceptual view of a composite
application developed using NetBeans. The services interact based on a formal
definition or contract implemented by WSDL. All service level communication
happens through WSDL. WSDL is independent of the underlying platform and
programming language so it is possible to build a composite application with
heterogeneous components wrapped up by web services.

CASA Workspace

WSDL Ports Modules

SMTP Port

JDBC Port

SOAP Port

BPEL Module

Service
Unit

Endpoint1

Endpoint2

JBI

External

Co
m
m
un
ca
to
n
Th
ro
ug
h
W
SD
L

P
C
P
C

P
C

Producer and Consumer

Implement Service
(Accepts First Message)
Invoke Service
(Sends First Message)

P

C

P
C

P
C

P
C

P
C

Add/Edit/Remove
WSDL Service Endpoints
Bindings Units

Composite Applications

[278]

The producer endpoint accepts messages from a consumer endpoint. The producer
and consumer endpoints can be in the same service assembly or different
service assemblies.

This figure shows the workflow of the Composite Application as applicable to
NetBeans. You Create, Build, and Deploy composite applications in that order.
CASA Editor lets you edit the service assembly configuration, visually. Whenever
you build a project, the CASA Editor regenerates the view of the Composite
Application. After building the Composite Application you deploy the application
to a JBI Runtime engine provided by the application server.

Composite Application comprises of SUs, End Points and Connections as defined
by the JBI specification.

Chapter 11

[279]

Endpoint connections are of three types:

Connections between service units inside a service assembly. The connections
are part of the same JBI platform.
Connections between service units that are part of different service assemblies.
Connections between service units that are part of different service platforms.

Non-Hierarchical Model
A traditional enterprise application that involves web services receives a request
through SOAP or other protocols, processes the request, and sends the results back
to the consumer. This is often achieved through JAXP calls and JAX-WS annotations.

•

•
•

Composite Applications

[280]

Unlike the traditional application model, which uses domain specific libraries like
Java EE, .Net, the Composite Application Model uses Messages and is based on a
Non-Hierarchical Model. This peer-to-peer nature can be used to inject aspects into
the composite applications, providing clear layers of separation.

CASA Editor
CASA editor lets you see a high-level view of how SA is connected and configured.
More importantly, users can modify connections between elements within SA. The
routing of SUs and BCs can be easily tweaked or completely redone as it provides
visual editor enriched with a component palette for all available artifacts like binding
components and service units.

The first pane of the editor lists all the WSDL Ports. The second pane shows all
available JBI Modules. You can drag-and-drop any JBI module, including BPEL
modules, in this space. You can also add Service Units that are part of other service
assemblies in the third pane.

See the following figure for an example view. We have added two WSDL Ports of
SOAP binding. ProcessReservationPort consumes a BPEL process, which in turn
consumes NorthAirWS.

Chapter 11

[281]

You can add more WSDL Bindings that may not be part of your existing BPEL
module and configure the Endpoints graphically through the CASA Editor. If you
are using OpenESB bundle, you should see many WSDL Bindings available in the
palette as shown in the following screenshot:

If you are using NetBeans IDE, you may not see all of the WSDL Bindings. In
that case, you need to manually download and install the Binding Components as
discussed in the previous chapters.

Summary
In this chapter, we understood the need for a composite application to build a
SOA-based applications. The composite application offered by NetBeans comes with
an easy to use editor. Using this editor, you can add and edit WSDL bindings, service
units and end points through a graphical interface.

Index
Symbols
<definitions> element, WSDL

<binding/> element 120
<message/> element 118
<portType/> element 119
<portType/> element, operations 119
<service/> element 121
<types/> element 118
elements 118

A
advantages, BPEL

complexity, minimizing 75
endpoint management 75
high level of abstraction 75
WSDL centric approach 75

B
Binding Components

about 51
File Binding Component 54
FTP Binding Component 60
JBI container architecture, fitting into 52
JDBC Binding Component 66
JMS Binding Component 68
lifecycle 53
NetBeans support 52
other Binding Components 70
properties, maintaining 54
SMTP Binding Component 57
SOAP Binding Component 64

BPEL
about 8, 74
advantages 75

BPEL 2.0 elements 111, 112
compensation 76, 77
correlation 78
example, synchronous BPEL process 91
navigator window 90
need for, business process 75
product vendors 112, 113
projects 78
web service activities 84

BPEL Designer
about 10, 73
BPEL-based business process 74
BPEL runtime 78
handlers 184
views 79

BPEL handlers
about 184
compensation handlers 196
event handler 192
fault handlers 184
termination handlers 197

BPEL process
about 10, 74
activities 12
AirAlliance company 17-20
asynchronous process 12
correlation 13
correlation set 195
creating 208-222
designing, NetBeans BPEL Designer used

11
fault handling process 185, 186
features 14, 76
guest itinerary 11
guidelines, for creating 14
orchestration 37

[284]

partner services 11
partner services, creating 203-207
sample application 199
synchronous process 12
variables 12
XPath expression creating, NetBeans BPEL

Mapper used 12
BPEL process, designing terms

activities 12
partner services 11
variables 12

BPEL process example 91
BPEL Service Engine 35, 36
BPEL views

BPEL activities 90
BPEL mapper 82
design view 80
palette 83
source view 81
web service activities 84

business process 10
Business Process Execution language.

See BPEL

C
CASA Editor

about 20
endpoints, configuring 281
service units, adding 280
WSDL bindings, adding 281

compensation handlers 196
composite application

about 15, 275, 276
architecture 279
CASA Editor 281
CASA workspace 277
conceptual view 277
creating 223, 224
endpoint connections 279
non-hierarchical model 279
SOA, extending 275
tools, for creating 276
workflow 278

composite application project
about 276
creating, through NetBeans project 276

editing, CASA Editor tool used 277
objectives 277

Composite Application Service Assembly
editor. See CASA Editor

E
EAI 28
Enterprise Application Integration. See EAI
Enterprise Service Bus

about 29
architecture 31

ESB. See Enterprise Service Bus
event handlers

about 192
correlation set 195
On Alarm event handler 193
On Alarm event handler, properties 194
OnMessage event handler 192
OnMessage event handler, properties

194, 195

F
fault handlers

about 184
catch-all handler 191, 192
catch handler 191, 192
fault throwing 187
fault, handling 184, 185
process 185, 186
properties 187
system faults, throwing 188, 189

File Binding Component
about 54
message consumer 55
message provider 55
properties 56
properties editing, NetBeans Enterprise

Pack 56
FTP Binding Component

about 60
configuring 61
message consumer 60
message provider 60
properties 63, 64
proxy servers support 61

[285]

H
HTTP Binding Component. See SOAP

Binding Component

I
IEP, Netbeans IDE 6.0

Continous Query Language 164
event processing tools, need for 160
event processor, expected functionalities

160
event processors, input endpoints 164
event processors, output endpoints 164
event processors, validating 171
IEP editor 165
IEP editor, with operator palette window

166
IEP mechanism 161
IEP module, building 167-170
IEP palette 165
IEP process 164
IEP projects, testing 174-177
IEP runtime component 163
IEP Service Engine 162
operators, types 172
operators, with functionality 167
palette window operators 168
used as efficient pre-processing mechanism

162
IEP Service Engine

about 41, 162
IEP modules, creating 42
IEP processes 44
IEP processes, executing 44
IEP project 42
Intelligent Event Processors, adding 43

Intelligent Event Processing Service Engine.
See IEP Service Engine

J
Java Business Integration. See JBI
Java Business Integration Specification

Request. See JSR 208
Java EE application 16
Java EE Service Engine

about 16, 38

benefits 39
increased performance, benefits 39
security support, benefits 39
transaction support, benefits 39

Java EE Web Services 38
JBI

about 15-17
application integrator, difficulties 28
JSR 208 29
need for 27, 28
NMR 30
runtime environment 15, 16
Service Engine component 29
service unit 36
Sun Java System Application Server,

integrating with 16
system integrators 28

JBI components
Binding Components 30, 51
Service Engine 31
service units 16

JDBC Binding Component
about 66
consumer 66
necessary files 66
properties 67
provider 66

JMS Binding Component
about 68
JMS Queue 68
JMS Topic 68
NetBeans Enterprise Pack support 68
properties 68, 69

JNDI 40, 68
JSR 208

about 29
features 29

N
NetBeans

BPEL modules 36
IEP Process Editor 44
SQL module 39
SQL module project, artifacts 39

NetBeans 6.0 and OpenESB 2.0
differences 22

[286]

Netbeans IDE 6.0
environment, setting up 23, 24
IEP editor 165
IEP editor, tasks 165
IEP editor, with operator palette 166
installing 22

NetBeans projects
about 25
Composite Application project 26
IEP Module project 26
SQL Module project 26
XSLT Module project 26

NetBeans projects, types
BPEL Module project 26

NetBeans SOA tools
BPEL Designer 10
features 22
Java EE 21
Web Services 21

NMR
about 30
Enterprise Service Bus, architecture 31
message routing 30

Normalized Message Router. See NMR

O
OpenESB

about 8, 15, 17
installing 22

S
sample application, BPEL process

AirAlliance 200
business process, diagram 226
components 225
event processing 267-274
itinerary information, testing 247
itinerary information, uploading to FTP

server 252-261
itinerary information, writing to files

240-247
itinerary information on FTP server, testing

261
JMS messages, sending 247-250

JMS messages, testing 251, 252
mails, sending 262-266
multiple web services, testing 239
multiple web services, using 231-239
notification messages, testing 266
web service, creating 226-229
web service, testing 229, 230

Service Engine
about 29, 31
BPEL Service Engine 35
IEP Service Engine 41
Java EE Service Engine 38
life cycle 31
managing commands 32
SQL Service Engine 39
XSLT Service Engine 44, 45

service orchestration point 9
SMTP Binding Component

about 57
installing 58
message consumer 59
message provider 59
NetBeans modules, installing 58
properties, editing 60
SSL Support 60

SOA
about 7
composite applications 15, 275
concepts 8, 9
customer service 37
license generation service 37
overview 7
WSDL editor 56

SOAP Binding Component
about 64
configuring 64
consumer, providing HTTP SOAP 1.1

services 64
encoding schemes support 64
properties 65
provider 64

SQL Service Assembly 41
SQL Service Engine

about 39
SQL DDL (Data Definition Language) 39

[287]

T
termination handlers 197

W
web service activities, BPEL

invoke 84, 85
partner link 88-90
receive 86
reply 87

Web Service Definition Language.
See WSDL

WSDL
<definitions> element 118
about 115
benefits 116, 117
documents 116
editor 115
entities, refactoring 129, 130
simple web service, building 130-139

WSDL documents
about 116
binding types 124, 125
creating, within NetBeans IDE 121-124
editing, within NetBeans IDE 125-129
fault, handling 180-183
format 117
Partner view 128
Source view 126
structure 117, 118
views 125
WSDL view 126

WSDL editor 115

X
XML Schema

about 142, 143
design patterns 154, 156
features 144
XML structure, defining 144

XML Schema documents
about 145
NetBeans support 145

XSD file
creating, within NetBeans 146
design patterns, applying 156
Design view 147
Design view, elements 153
Design view, entities creating 151
Design view, features 150-153
Design view, Find Usages tool 153
Schema view 147
Schema view, entities creating 148-150
Schema view, features 148-150
Source view 147
Source view, features 147
views 146

XSLT Service Engine
about 44, 45
request reply service, creating 46
request reply service, Service types 46
service bridge, creating 48
service bridge, Service types 46
Service types 45
XSLT modules, building 45
XSLT modules, WSDL files 45
XSLT modules, XML files 45

Thank you for buying
Building SOA-Based Composite
Applications Using NetBeans IDE 6

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Building SOA-Based Composite Applications Using
NetBeans IDE 6, Packt will have given some of the money received to the NetBeans project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to authors@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Service Oriented Java Business
Integration
ISBN: 978-1-847194-40-4 Paperback: 350 pages

Integrating solution for Java developers

1. Enterprise Service Bus (ESB) for integrating
loosely coupled, pluggable services.

2. See Enterprise Integration Patterns (EIP) in
action, in code.

3. ESB integration solutions using Apache open
source tools

4. JBI features explained with the help of real
world examples

SOA Approach to Integration
ISBN: 978-1-904811-17-6 Paperback: 300 pages

XML, Web services, ESB, and BPEL in real-world
SOA projects

1. Service-Oriented Architectures and SOA
approach to integration

2. SOA architectural design and
domain-specific models

3. Common Integration Patterns and how they
can be best solved using Web services, BPEL
and Enterprise Service Bus (ESB)

4. Concepts behind SOA standards, security,
transactions, and how to efficiently work
with XML

Please visit www.PacktPub.com for information on our titles

	Cover
	Table of Contents
	Preface
	Chapter 1: Enterprise Application Development
	SOA and POA
	Introduction to Various BPEL Processes
	Partner Services
	Activities
	Variables

	Composite Applications and JBI
	AirAlliance Company
	The Problem

	The Enterprise Stack
	Summary

	Chapter 2: Getting Started
	Getting the Software
	NetBeans IDE 6.0
	OpenESB

	Setting up the Environment
	NetBeans Projects
	Summary

	Chapter 3: Service Engines
	Need for Java Business Integration (JBI)
	Enterprise Service Bus
	The Normalized Message Router
	Service Engine Life Cycle
	Service Engines in NetBeans

	BPEL Service Engine
	Java EE Service Engine
	Increased Performance
	Transaction Support
	Security Support

	SQL Service Engine
	IEP Service Engine
	XSLT Service Engine
	Summary

	Chapter 4: Binding Components
	Binding Components
	NetBeans Support for Binding Components
	File Binding Component
	SMTP Binding Component
	SOAP Binding Component
	JDBC Binding Component
	JMS Binding Component
	Other Binding Components
	Summary

	Chapter 5: BPEL Designer
	BPEL for Business Process
	Understanding BPEL Projects
	BPEL Views
	Design View
	Source View
	BPEL Mapper
	Palette
	Web Service Activities
	Invoke
	Receive
	Reply
	Partner Link

	Other BPEL Activities

	Navigator Window
	A Simple Example
	BPEL 2.0 Elements
	BPEL Products and Vendors
	Summary

	Chapter 6: WSDL Editor
	What is WSDL?
	Why WSDL?
	The Format of WSDL Documents
	WSDL Types
	WSDL Messages
	WSDL Port Types
	WSDL Binding
	WSDL Service

	NetBeans Support for Creating WSDL Documents
	NetBeans Support for Editing WSDL Documents
	Refactoring of WSDL Entities
	Building a Simple Contract First Web Service
	Summary

	Chapter 7: XML Schema Designer
	What are XML Schemas?
	NetBeans Support for XML Schema Documents
	Source View
	Schema View
	Design View

	Uses of Elements
	XML Schema Design Patterns
	Summary

	Chapter 8: Intelligent Event Processor
	Need for Event Processing Tools
	IEP Service Engine
	Continuous Query Language (CQL)
	The IEP Editor and Palette
	Validating Event Processors

	Operators Input and Output Types
	Testing IEP Projects
	Summary

	Chapter 9: Handling Events
	Fault Handling Within WSDL Documents
	BPEL Handlers
	Fault Handlers
	Event Handlers
	Compensation Handlers
	Termination Handlers

	Summary

	Chapter 10: Building a Sample Application
	About the Sample Application
	Getting Started
	Creating Partner Services
	Creating the BPEL Process

	Creating a Composite Application
	Part A - The Approach
	Testing Part A Source

	Part B – Using Multiple Partners
	Testing Part B Source

	Part C – Writing to File
	Testing Part C Source

	Part D – Sending JMS Messages
	Testing Part D Source

	Part E – Conditions and Sequence
	Testing Part E Source

	Part F – Sending Mails
	Testing Part F Source

	Part G – Event Processing
	Summary

	Chapter 11: Composite Applications
	Role of Composite Applications
	NetBeans Project Types
	Workspace
	Non-Hierarchical Model
	CASA Editor

	Summary

	Index

